[Establishment of 3D finite element model of meniscus and its mechanical analysis].
Biomechanics
Finite element analysis
Meniscus
Journal
Zhongguo gu shang = China journal of orthopaedics and traumatology
ISSN: 1003-0034
Titre abrégé: Zhongguo Gu Shang
Pays: China
ID NLM: 9815790
Informations de publication
Date de publication:
25 Aug 2020
25 Aug 2020
Historique:
entrez:
3
9
2020
pubmed:
3
9
2020
medline:
4
9
2020
Statut:
ppublish
Résumé
To establish a 3D finite element model of normal knee joint involved its meniscus, which can be used to simulate the anatomical morphology and characteristics of human knee joint, to verify the validity of the model by preliminary FEA mechanical analysis, and explain partially biomechanical mechanisms of meniscus. CT and MRI data were harvested by scanning the knee joint of a healthy male volunteer, and then these data were imported into Mimics 10.01 software and Geomagic Studio software to constructed the 3D models of tissue structures of knee joint. These models were combined to constructed the 3D model of intact knee joint and meshed in ANSA software. Therefore the finite element model of intact knee joint was established. Finally, after the definitionof its material behavior, boundary conditions and loading. The finite element model of knee joint was analyzed and verified using ANSYS software. Meanwhile The biomechanical properties of meniscus were analyzed. The complete knee finite element model composed of bone, meniscus, articular cartilage, and major ligaments was established. It could effectively simulate the anatomical morphology and characteristics of knee joint and its meniscus. The contact area of medial meniscus was 771.05 mm The established finite element model of knee joint are proved to be have validity, and is a useful model for finite element analysis of meniscus tear and menisectomy. The results of finite element analysis can explain partially biomechanical mechanisms of meniscus which can provide theoretical guidance for clinical treatment of meniscus injury.
Identifiants
pubmed: 32875770
doi: 10.12200/j.issn.1003-0034.2020.08.016
doi:
Types de publication
Journal Article
Langues
chi
Sous-ensembles de citation
IM