Prefrontal resting-state connectivity and antidepressant response: no associations in the ELECT-TDCS trial.


Journal

European archives of psychiatry and clinical neuroscience
ISSN: 1433-8491
Titre abrégé: Eur Arch Psychiatry Clin Neurosci
Pays: Germany
ID NLM: 9103030

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 30 04 2020
accepted: 20 08 2020
pubmed: 4 9 2020
medline: 14 1 2022
entrez: 4 9 2020
Statut: ppublish

Résumé

Functional and structural MRI of prefrontal cortex (PFC) may provide putative biomarkers for predicting the treatment response to transcranial direct current stimulation (tDCS) in depression. A recent MRI study from ELECT-TDCS (Escitalopram versus Electrical Direct-Current Theror Depression Study) showed that depression improvement after tDCS was associated with gray matter volumes of PFC subregions. Based thereon, we investigated whether antidepressant effects of tDCS are similarly associated with baseline resting-state functional connectivity (rsFC). A subgroup of 51 patients underwent baseline rsFC-MRI. All patients of ELECT-TDCS were randomized to three treatment arms for 10 weeks (anodal-left, cathodal-right PFC tDCS plus placebo medication; escitalopram 10 mg/day for 3 weeks and 20 mg/day thereafter plus sham tDCS; and placebo medication plus sham tDCS). RsFC was calculated for various PFC regions and analyzed in relation to the individual antidepressant response. There was no significant association between baseline PFC connectivity of essential structural regions, nor any other PFC regions (after correction for multiple comparisons) and patients' individual antidepressant response. This study did not reveal an association between antidepressants effects of tDCS and baseline rsFC, unlike the gray matter volume findings. Thus, the antidepressant effects of tDCS may be differentially related to structural and functional MRI measurements.

Identifiants

pubmed: 32880057
doi: 10.1007/s00406-020-01187-y
pii: 10.1007/s00406-020-01187-y
doi:

Substances chimiques

Antidepressive Agents 0
Escitalopram 4O4S742ANY

Types de publication

Comparative Study Journal Article Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

123-134

Subventions

Organisme : FAPESP
ID : 2012/20911-5
Organisme : BMBF
ID : 01EE1403E

Références

Ivleva EI, Turkozer HB, Sweeney JA (2020) Imaging-based subtyping for psychiatric syndromes. Neuroimaging Clin N Am 30(1):35–44. https://doi.org/10.1016/j.nic.2019.09.005
doi: 10.1016/j.nic.2019.09.005 pubmed: 31759570
Palmer SM, Crewther SG, Carey LM, Team SP (2014) A meta-analysis of changes in brain activity in clinical depression. Front Human Neurosci 8:1045. https://doi.org/10.3389/fnhum.2014.01045
doi: 10.3389/fnhum.2014.01045
Iwabuchi SJ, Krishnadas R, Li C, Auer DP, Radua J, Palaniyappan L (2015) Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci Biobehav Rev 51:77–86. https://doi.org/10.1016/j.neubiorev.2015.01.006
doi: 10.1016/j.neubiorev.2015.01.006 pubmed: 25597656
Fu CH, Steiner H, Costafreda SG (2013) Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis 52:75–83. https://doi.org/10.1016/j.nbd.2012.05.008
doi: 10.1016/j.nbd.2012.05.008 pubmed: 22659303
Fonseka TM, MacQueen GM, Kennedy SH (2018) Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. J Affect Disord 233:21–35. https://doi.org/10.1016/j.jad.2017.10.049
doi: 10.1016/j.jad.2017.10.049 pubmed: 29150145
Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JR, Deckersbach T et al (2015) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J psychiatry 172(2):124–138. https://doi.org/10.1176/appi.ajp.2014.14010076
doi: 10.1176/appi.ajp.2014.14010076 pubmed: 25640931 pmcid: 4464814
Dunlop K, Talishinsky A, Liston C (2019) Intrinsic brain network biomarkers of antidepressant response: a review. Curr Psychiatry Rep 21(9):87. https://doi.org/10.1007/s11920-019-1072-6
doi: 10.1007/s11920-019-1072-6 pubmed: 31410661 pmcid: 6692448
Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258. https://doi.org/10.1073/pnas.0135058100
doi: 10.1073/pnas.0135058100 pubmed: 12506194
Raichle ME (2015) The brain's default mode network. Annu Rev Neurosci 38:433–447. https://doi.org/10.1146/annurev-neuro-071013-014030
doi: 10.1146/annurev-neuro-071013-014030 pubmed: 25938726
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682. https://doi.org/10.1073/pnas.98.2.676
doi: 10.1073/pnas.98.2.676 pubmed: 11209064 pmcid: 14647
Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72(6):603–611. https://doi.org/10.1001/jamapsychiatry.2015.0071
doi: 10.1001/jamapsychiatry.2015.0071 pubmed: 25785575 pmcid: 4456260
Goldstein-Piekarski AN, Staveland BR, Ball TM, Yesavage J, Korgaonkar MS, Williams LM (2018) Intrinsic functional connectivity predicts remission on antidepressants: a randomized controlled trial to identify clinically applicable imaging biomarkers. Transl Psychiatry 8(1):57. https://doi.org/10.1038/s41398-018-0100-3
doi: 10.1038/s41398-018-0100-3 pubmed: 29507282 pmcid: 5838245
Dunlop BW, Rajendra JK, Craighead WE, Kelley ME, McGrath CL, Choi KS et al (2017) Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatry 174(6):533–545. https://doi.org/10.1176/appi.ajp.2016.16050518
doi: 10.1176/appi.ajp.2016.16050518 pubmed: 28335622 pmcid: 5453828
Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng LL et al (2013) A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry 74(1):48–54. https://doi.org/10.1016/j.biopsych.2012.11.007
doi: 10.1016/j.biopsych.2012.11.007 pubmed: 23273724
Fettes PW, Moayedi M, Dunlop K, Mansouri F, Vila-Rodriguez F, Giacobbe P et al (2018) Abnormal functional connectivity of frontopolar subregions in treatment-nonresponsive major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 3(4):337–347. https://doi.org/10.1016/j.bpsc.2017.12.003
doi: 10.1016/j.bpsc.2017.12.003 pubmed: 29628066
Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J (2018) Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 23(5):1094–1112. https://doi.org/10.1038/mp.2018.2
doi: 10.1038/mp.2018.2 pubmed: 29483673
Levy A, Taib S, Arbus C, Peran P, Sauvaget A, Schmitt L et al (2019) Neuroimaging biomarkers at baseline predict electroconvulsive therapy overall clinical response in depression: a systematic review. J ECT 35(2):77–83. https://doi.org/10.1097/YCT.0000000000000570
doi: 10.1097/YCT.0000000000000570 pubmed: 30628993
Moreno-Ortega M, Prudic J, Rowny S, Patel GH, Kangarlu A, Lee S et al (2019) Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression. Sci Rep 9(1):5071. https://doi.org/10.1038/s41598-019-41175-4
doi: 10.1038/s41598-019-41175-4 pubmed: 30911075 pmcid: 6433903
van Waarde JA, Scholte HS, van Oudheusden LJ, Verwey B, Denys D, van Wingen GA (2015) A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol Psychiatry 20(5):609–614. https://doi.org/10.1038/mp.2014.78
doi: 10.1038/mp.2014.78 pubmed: 25092248
Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF et al (2018) Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry 84(1):28–37. https://doi.org/10.1016/j.biopsych.2017.10.028
doi: 10.1016/j.biopsych.2017.10.028 pubmed: 29274805
Ge R, Blumberger DM, Downar J, Daskalakis ZJ, Dipinto AA, Tham JCW et al (2017) Abnormal functional connectivity within resting-state networks is related to rTMS-based therapy effects of treatment resistant depression: a pilot study. J Affect Disord 218:75–81. https://doi.org/10.1016/j.jad.2017.04.060
doi: 10.1016/j.jad.2017.04.060 pubmed: 28460314
Fox MD, Halko MA, Eldaief MC, Pascual-Leone A (2012) Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62(4):2232–2243. https://doi.org/10.1016/j.neuroimage.2012.03.035
doi: 10.1016/j.neuroimage.2012.03.035 pubmed: 22465297 pmcid: 3518426
Ge R, Downar J, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F (2020) Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up. Brain Stimul 13(1):206–214. https://doi.org/10.1016/j.brs.2019.10.012
doi: 10.1016/j.brs.2019.10.012 pubmed: 31668646
Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A (2012) Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 72(7):595–603. https://doi.org/10.1016/j.biopsych.2012.04.028
doi: 10.1016/j.biopsych.2012.04.028 pubmed: 22658708 pmcid: 4120275
Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
doi: 10.1111/j.1469-7793.2000.t01-1-00633.x pubmed: 10990547 pmcid: 2270099
Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F et al (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128(1):56–92. https://doi.org/10.1016/j.clinph.2016.10.087
doi: 10.1016/j.clinph.2016.10.087 pubmed: 27866120
Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA et al (2017) Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med 376(26):2523–2533. https://doi.org/10.1056/NEJMoa1612999
doi: 10.1056/NEJMoa1612999 pubmed: 28657871
Brunoni AR, Valiengo L, Baccaro A, Zanao TA, de Oliveira JF, Goulart A et al (2013) The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 70(4):383–391. https://doi.org/10.1001/2013.jamapsychiatry.32
doi: 10.1001/2013.jamapsychiatry.32 pubmed: 23389323
Loo CK, Husain MM, McDonald WM, Aaronson S, O'Reardon JP, Alonzo A et al (2018) International randomized-controlled trial of transcranial direct current stimulation in depression. Brain Stimul 11(1):125–133. https://doi.org/10.1016/j.brs.2017.10.011
doi: 10.1016/j.brs.2017.10.011 pubmed: 29111077
Boggio PS, Rigonatti SP, Ribeiro RB, Myczkowski ML, Nitsche MA, Pascual-Leone A et al (2008) A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int J Neuropsychopharmacol 11(2):249–254. https://doi.org/10.1017/S1461145707007833
doi: 10.1017/S1461145707007833 pubmed: 17559710
Blumberger DM, Tran LC, Fitzgerald PB, Hoy KE, Daskalakis ZJ (2012) A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression. Front Psychiatry 3:74. https://doi.org/10.3389/fpsyt.2012.00074
doi: 10.3389/fpsyt.2012.00074 pubmed: 22912618 pmcid: 3421236
Palm U, Schiller C, Fintescu Z, Obermeier M, Keeser D, Reisinger E et al (2012) Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study. Brain Stimul 5(3):242–251. https://doi.org/10.1016/j.brs.2011.08.005
doi: 10.1016/j.brs.2011.08.005 pubmed: 21962978
Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM et al (2016) Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry 208(6):522–531. https://doi.org/10.1192/bjp.bp.115.164715
doi: 10.1192/bjp.bp.115.164715 pubmed: 27056623 pmcid: 4887722
Bulubas L, Padberg F, Bueno PV, Duran F, Busatto G, Amaro E Jr et al (2019) Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline: evidence from the ELECT-TDCS trial. Brain Stimul 12(5):1197–1204. https://doi.org/10.1016/j.brs.2019.05.006
doi: 10.1016/j.brs.2019.05.006 pubmed: 31105027
Filmer HL, Ehrhardt SE, Shaw TB, Mattingley JB, Dux PE (2019) The efficacy of transcranial direct current stimulation to prefrontal areas is related to underlying cortical morphology. Neuroimage 196:41–48. https://doi.org/10.1016/j.neuroimage.2019.04.026
doi: 10.1016/j.neuroimage.2019.04.026 pubmed: 30978491
Antonenko D, Thielscher A, Saturnino GB, Aydin S, Ittermann B, Grittner U et al (2019) Towards precise brain stimulation: Is electric field simulation related to neuromodulation? Brain Stimul. https://doi.org/10.1016/j.brs.2019.03.072
doi: 10.1016/j.brs.2019.03.072 pubmed: 30930209
Opitz A, Paulus W, Will S, Antunes A, Thielscher A (2015) Determinants of the electric field during transcranial direct current stimulation. Neuroimage 109:140–150. https://doi.org/10.1016/j.neuroimage.2015.01.033
doi: 10.1016/j.neuroimage.2015.01.033 pubmed: 25613437
Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C et al (2011) Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 31(43):15284–15293. https://doi.org/10.1523/JNEUROSCI.0542-11.2011
doi: 10.1523/JNEUROSCI.0542-11.2011 pubmed: 22031874 pmcid: 6703525
Pena-Gomez C, Sala-Lonch R, Junque C, Clemente IC, Vidal D, Bargallo N et al (2012) Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul 5(3):252–263. https://doi.org/10.1016/j.brs.2011.08.006
doi: 10.1016/j.brs.2011.08.006 pubmed: 21962981
Ironside M, Browning M, Ansari TL, Harvey CJ, Sekyi-Djan MN, Bishop SJ et al (2018) Effect of prefrontal cortex stimulation on regulation of amygdala response to threat in individuals with trait anxiety: a randomized clinical trial. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2018.2172
doi: 10.1001/jamapsychiatry.2018.2172 pmcid: 6583758
Nord CL, Chamith Halahakoon D, Limbachya T, Charpentier C, Lally N, Walsh V et al (2019) Neural predictors of treatment response to brain stimulation and psychological therapy in depression: a double-blind randomized controlled trial. Neuropsychopharmacology. https://doi.org/10.1038/s41386-019-0401-0
doi: 10.1038/s41386-019-0401-0 pubmed: 31039579 pmcid: 6784995
Worsching J, Padberg F, Helbich K, Hasan A, Koch L, Goerigk S et al (2017) Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. Neuroimage 155:187–201. https://doi.org/10.1016/j.neuroimage.2017.04.052
doi: 10.1016/j.neuroimage.2017.04.052 pubmed: 28450138
Brunoni AR, Sampaio-Junior B, Moffa AH, Borrione L, Nogueira BS, Aparicio LV et al (2015) The Escitalopram versus Electric Current Therapy for Treating Depression Clinical Study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. Sao Paulo Med J 133(3):252–263. https://doi.org/10.1590/1516-3180.2014.00351712
doi: 10.1590/1516-3180.2014.00351712 pubmed: 26176930
Kambeitz J, Goerigk S, Gattaz W, Falkai P, Bensenor IM, Lotufo PA et al (2020) Clinical patterns differentially predict response to transcranial direct current stimulation (tDCS) and escitalopram in major depression: a machine learning analysis of the ELECT-TDCS study. J Affect Disord 265:460–467. https://doi.org/10.1016/j.jad.2020.01.118
doi: 10.1016/j.jad.2020.01.118 pubmed: 32090773
Seibt O, Brunoni AR, Huang Y, Bikson M (2015) The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimul 8(3):590–602. https://doi.org/10.1016/j.brs.2015.01.401
doi: 10.1016/j.brs.2015.01.401 pubmed: 25862601
Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y et al (2018) Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. The Lancet 391(10128):1357–1366. https://doi.org/10.1016/s0140-6736(17)32802-7
doi: 10.1016/s0140-6736(17)32802-7
Karali T, Kirsch V, Padberg F, Ertl-Wagner B, Keeser D. LMU Scripts: Ready-Made HPC-Applicable Pipeline for Structural and Functional Data Analyses. 23rd Annual Meeting of the Organization for Human Brain Mapping. Vancouver, CA; 2017.
Worsching J, Padberg F, Goerigk S, Heinz I, Bauer C, Plewnia C et al (2018) Testing assumptions on prefrontal transcranial direct current stimulation: comparison of electrode montages using multimodal fMRI. Brain Stimul 11(5):998–1007. https://doi.org/10.1016/j.brs.2018.05.001
doi: 10.1016/j.brs.2018.05.001 pubmed: 29759944
Blautzik J, Vetter C, Peres I, Gutyrchik E, Keeser D, Berman A et al (2013) Classifying fMRI-derived resting-state connectivity patterns according to their daily rhythmicity. Neuroimage 71:298–306. https://doi.org/10.1016/j.neuroimage.2012.08.010
doi: 10.1016/j.neuroimage.2012.08.010 pubmed: 22906784
Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O'Reilly JX et al (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33(30):12255–12274. https://doi.org/10.1523/JNEUROSCI.5108-12.2013
doi: 10.1523/JNEUROSCI.5108-12.2013 pubmed: 23884933 pmcid: 3744647
Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Johann Ambrosius Barth; 1909.
Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11(3):1011–1036
doi: 10.1046/j.1460-9568.1999.00518.x
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
RStudio Team. RStudio: Integrated Development Environment for R}. Boston, MA: RStudio, Inc.; 2016.
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York
doi: 10.1007/978-0-387-98141-3
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models Usinglme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01
doi: 10.18637/jss.v067.i01
Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmertest package: tests in linear mixed effects models. J Stat Softw. https://doi.org/10.18637/jss.v082.i13
doi: 10.18637/jss.v082.i13
Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12(4):191–200
doi: 10.1155/2000/421719
Hedges LV (2016) Effect sizes in cluster-randomized designs. J Educ Behav Stat 32(4):341–370. https://doi.org/10.3102/1076998606298043
doi: 10.3102/1076998606298043
Vazquez-Rodriguez B, Suarez LE, Markello RD, Shafiei G, Paquola C, Hagmann P et al (2019) Gradients of structure-function tethering across neocortex. Proc Natl Acad Sci U S A 116(42):21219–21227. https://doi.org/10.1073/pnas.1903403116
doi: 10.1073/pnas.1903403116 pubmed: 31570622 pmcid: 6800358
Suarez LE, Markello RD, Betzel RF, Misic B (2020) Linking structure and function in macroscale brain networks. Trends Cogn Sci 24(4):302–315. https://doi.org/10.1016/j.tics.2020.01.008
doi: 10.1016/j.tics.2020.01.008 pubmed: 32160567
Keeser D, Padberg F, Reisinger E, Pogarell O, Kirsch V, Palm U et al (2011) Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage 55(2):644–657. https://doi.org/10.1016/j.neuroimage.2010.12.004
doi: 10.1016/j.neuroimage.2010.12.004 pubmed: 21146614
Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38. https://doi.org/10.1038/nm.4246
doi: 10.1038/nm.4246 pubmed: 27918562
Lefaucheur JP, Andre-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125(11):2150–2206. https://doi.org/10.1016/j.clinph.2014.05.021
doi: 10.1016/j.clinph.2014.05.021 pubmed: 25034472

Auteurs

Lucia Bulubas (L)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.

Frank Padberg (F)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Eva Mezger (E)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Paulo Suen (P)

Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Institute of Psychiatry, University of Sao Paulo, Instituto de Psiquiatria, Hospital das Clínicas, FMUSP, R. Dr. Ovidio Pires de Campos 785, 2o andar, Sao Paulo, 05403-903, Brazil.

Priscila V Bueno (PV)

Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Institute of Psychiatry, University of Sao Paulo, Instituto de Psiquiatria, Hospital das Clínicas, FMUSP, R. Dr. Ovidio Pires de Campos 785, 2o andar, Sao Paulo, 05403-903, Brazil.

Fabio Duran (F)

Center for Interdisciplinary Research On Applied Neurosciences (NAPNA) and Laboratory of Psychiatric Neuroimaging, Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil.

Geraldo Busatto (G)

Center for Interdisciplinary Research On Applied Neurosciences (NAPNA) and Laboratory of Psychiatric Neuroimaging, Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil.

Edson Amaro (E)

Department of Radiology, Clinics Hospital, University of Sao Paulo Medical School, Sao Paulo, Brazil.

Isabela M Benseñor (IM)

Departamento de Clínica Médica, Faculdade de Medicina da USP, Hospital Universitario, São Paulo, Brazil.

Paulo A Lotufo (PA)

Departamento de Clínica Médica, Faculdade de Medicina da USP, Hospital Universitario, São Paulo, Brazil.

Stephan Goerigk (S)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
Department of Psychological Methodology and Assessment, LMU Munich, Munich, Germany.
Hochschule Fresenius, University of Applied Sciences, Munich, Germany.

Wagner Gattaz (W)

Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Institute of Psychiatry, University of Sao Paulo, Instituto de Psiquiatria, Hospital das Clínicas, FMUSP, R. Dr. Ovidio Pires de Campos 785, 2o andar, Sao Paulo, 05403-903, Brazil.

Daniel Keeser (D)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
Munich Center for Neurosciences (MCN)-Brain & Mind, Planegg, Martinsried, Germany.

Andre R Brunoni (AR)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany. brunowsky@gmail.com.
Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Institute of Psychiatry, University of Sao Paulo, Instituto de Psiquiatria, Hospital das Clínicas, FMUSP, R. Dr. Ovidio Pires de Campos 785, 2o andar, Sao Paulo, 05403-903, Brazil. brunowsky@gmail.com.
Departamento de Clínica Médica, Faculdade de Medicina da USP, Hospital Universitario, São Paulo, Brazil. brunowsky@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH