Effect of adenosine monophosphate-activated protein kinase-p53-Krüppel-like factor 2a pathway in hyperglycemia-induced cardiac remodeling in adult zebrafish.
Adenosine monophosphate-activated protein kinases
Diabetic cardiomyopathies
Zebrafish
Journal
Journal of diabetes investigation
ISSN: 2040-1124
Titre abrégé: J Diabetes Investig
Pays: Japan
ID NLM: 101520702
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
27
03
2020
revised:
07
08
2020
accepted:
12
08
2020
pubmed:
4
9
2020
medline:
15
12
2021
entrez:
4
9
2020
Statut:
ppublish
Résumé
Diabetic cardiomyopathy is a type of myocardial disease. It causes left ventricular hypertrophy, followed by diastolic and systolic dysfunction, eventually leading to congestive heart failure. However, the underlying mechanism still requires further elucidation. A high-glucose zebrafish model was constructed by administering streptozocin intraperitoneally to enhance the development of cardiomyopathy and then treated with adenosine monophosphate-activated protein kinase (AMPK) activator. Cardiac structure and function, and protein and gene expression were then analyzed. Cardiomyocytes (CMs) culture in vitro using lentivirus were used for detection of AMPK, p53 and Krüppel-like factor 2a (klf2a) gene expression. In the hyperglycemia group, electrocardiogram findings showed arrhythmia, echocardiography results showed heart enlargement and dysfunction, and many differences, such as increased apoptosis and myocardial fiber loss, were observed. The phospho-AMPK and klf2a expression were downregulated, and p53 expression was upregulated. Activation of phospho-AMPK reduced p53 and increased klf2a expression, alleviated apoptosis in CMs and improved cardiac function in the hyperglycemic zebrafish. In vitro knockdown system of AMPK, p53 and klf2a using lentivirus illustrated an increased p53 expression and decreased klf2a expression in CMs by inhibiting AMPK. Repression of p53 and upregulation of klf2a expression were observed, but no changes in the expression of AMPK and its phosphorylated type. In the model of streptozocin-induced hyperglycemia zebrafish, the reduction of phosphorylated AMPK increased p53, which led to KLF2a decrease to facilitate apoptosis of CMs, inducing the cardiac remodeling and cardiac dysfunction. These results can be reversed by AMPK activator, which means the AMPK-p53-klf2a pathway might be a potential target for diabetic cardiomyopathy intervention.
Identifiants
pubmed: 32881390
doi: 10.1111/jdi.13393
pmc: PMC7926222
doi:
Substances chimiques
Kruppel-Like Transcription Factors
0
Adenosine Monophosphate
415SHH325A
AMP-Activated Protein Kinases
EC 2.7.11.31
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
320-333Subventions
Organisme : National Natural Science Foundation of China
ID : 81370331
Informations de copyright
© 2020 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
Références
Lancet. 2015 May 23;385(9982):2107-17
pubmed: 26009231
Blood. 2002 Sep 1;100(5):1689-98
pubmed: 12176889
Diabetes. 2009 Jun;58(6):1391-402
pubmed: 19324938
J Clin Invest. 2006 Jan;116(1):49-58
pubmed: 16341264
Circulation. 2007 Jun 26;115(25):3213-23
pubmed: 17592090
J Am Coll Cardiol. 2006 Oct 17;48(8):1688-97
pubmed: 17045908
Am J Cardiol. 1972 Nov 8;30(6):595-602
pubmed: 4263660
Nat Rev Cancer. 2009 Aug;9(8):563-75
pubmed: 19629071
Gerontology. 2015;61(5):435-47
pubmed: 25531915
J Diabetes Investig. 2021 Mar;12(3):320-333
pubmed: 32881390
Oncogene. 2005 Jun 2;24(24):3875-85
pubmed: 15735666
Int J Cardiovasc Imaging. 2019 Apr;35(4):665-673
pubmed: 30430327
Front Physiol. 2016 Mar 08;7:56
pubmed: 27014075
Cardiovasc Diabetol. 2015 Sep 23;14:125
pubmed: 26394923
FEBS J. 2015 Dec;282(24):4658-71
pubmed: 26426570
Int J Cardiovasc Imaging. 2017 Apr;33(4):481-490
pubmed: 27853970
Toxicol Lett. 2018 Mar 1;284:10-20
pubmed: 29174818
J Cell Physiol. 2019 Feb;234(2):1925-1936
pubmed: 30067872
Sci Rep. 2018 Dec 4;8(1):17631
pubmed: 30514933
Dis Model Mech. 2017 Oct 1;10(10):1217-1227
pubmed: 28801532
Diabetologia. 2014 Apr;57(4):660-71
pubmed: 24477973
Wound Repair Regen. 2013 Mar-Apr;21(2):320-8
pubmed: 23438205
PLoS One. 2012;7(5):e36474
pubmed: 22623957
Pan Afr Med J. 2018 Nov 09;31:169
pubmed: 31086622
Biotechnol Bioeng. 2017 Sep;114(9):2142-2148
pubmed: 28475237
Annu Rev Pathol. 2015;10:195-262
pubmed: 25621660
Chin J Integr Med. 2014 Jul;20(7):524-33
pubmed: 24972580
J Biol Chem. 2011 Dec 2;286(48):41600-41615
pubmed: 21862591
Fish Shellfish Immunol. 2019 Oct;93:1093-1099
pubmed: 31310849
Nat Rev Endocrinol. 2016 Mar;12(3):144-53
pubmed: 26678809
Diabetes. 2014 Oct;63(10):3497-511
pubmed: 24848068
Exp Clin Endocrinol Diabetes. 2017 Oct;125(9):583-591
pubmed: 26824288
Sci Rep. 2014 Jul 01;4:5510
pubmed: 24981420
Stem Cell Rev Rep. 2019 Feb;15(1):13-22
pubmed: 30343468
Annu Rev Biochem. 1998;67:821-55
pubmed: 9759505
PLoS One. 2016 Nov 16;11(11):e0166740
pubmed: 27851811
Zebrafish. 2010 Sep;7(3):297-304
pubmed: 20807039
Mol Cell Endocrinol. 2015 Sep 5;412:85-94
pubmed: 26054749
Biochim Biophys Acta. 2016 Nov;1862(11):2023-2033
pubmed: 27523632
J Cell Mol Med. 2016 Apr;20(4):623-31
pubmed: 26869403
J Vis Exp. 2018 Jul 3;(137):
pubmed: 30035763
Biol Reprod. 2016 May;94(5):111
pubmed: 27030046
Nat Protoc. 2013 Apr;8(4):800-9
pubmed: 23538883
Physiol Rev. 2017 Jul 1;97(3):889-938
pubmed: 28468832