A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
04 09 2020
Historique:
received: 16 04 2020
accepted: 05 08 2020
entrez: 5 9 2020
pubmed: 6 9 2020
medline: 17 6 2021
Statut: epublish

Résumé

Understanding heterogeneity is an important goal on the path to precision medicine for autism spectrum disorders (ASD). We examined how cortical thickness (CT) in ASD can be parameterized as an individualized metric of atypicality relative to typically-developing (TD) age-related norms. Across a large sample (n = 870 per group) and wide age range (5-40 years), we applied normative modelling resulting in individualized whole-brain maps of age-related CT atypicality in ASD and isolating a small subgroup with highly age-atypical CT. Age-normed CT scores also highlights on-average differentiation, and associations with behavioural symptomatology that is separate from insights gleaned from traditional case-control approaches. This work showcases an individualized approach for understanding ASD heterogeneity that could potentially further prioritize work on a subset of individuals with cortical pathophysiology represented in age-related CT atypicality. Only a small subset of ASD individuals are actually highly atypical relative to age-norms. driving small on-average case-control differences.

Identifiants

pubmed: 32887930
doi: 10.1038/s42003-020-01212-9
pii: 10.1038/s42003-020-01212-9
pmc: PMC7474067
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

486

Subventions

Organisme : Medical Research Council
ID : MR/M009041/1
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom

Références

Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).
pubmed: 24074734 doi: 10.1016/S0140-6736(13)61539-1
Lombardo, M. V., Lai, M. -C. & Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0321-0 (2019).
Ecker, C. The neuroanatomy of autism spectrum disorder: an overview of structural neuroimaging findings and their translatability to the clinical setting. Autism 21, 18–28 (2017).
pubmed: 26975670 doi: 10.1177/1362361315627136
Hong, S.-J., Bernhardt, B. C., Gill, R. S., Bernasconi, N. & Bernasconi, A. The spectrum of structural and functional network alterations in malformations of cortical development. Brain 140, 2133–2143 (2017).
pubmed: 28899007 doi: 10.1093/brain/awx145
Hong, S.-J. et al. Atypical functional connectome hierarchy in autism. Nat. Commun. 10, 1022 (2019).
pubmed: 30833582 pmcid: 6399265 doi: 10.1038/s41467-019-08944-1
Hong, S.-J., Valk, L., Martino, A. D., Milham, M. P. & Bernhardt, B. C. Multidimensional neuroanatomical subtyping of autism spectrum disorder. Cerebral Cortex 10, 3578–3588 (2018).
doi: 10.1093/cercor/bhx229
Bedford, S. A. et al. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0420-6 (2019).
Schuetze, M. et al. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology 41, 2627–2637 (2016).
pubmed: 27125303 pmcid: 5026732 doi: 10.1038/npp.2016.64
Vissers, M. E., Cohen, M. X. & Geurts, H. M. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci. Biobehav. Rev. 36, 604–625 (2012).
pubmed: 21963441 doi: 10.1016/j.neubiorev.2011.09.003
Ecker, C. et al. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry 70, 59–70 (2013).
pubmed: 23404046 doi: 10.1001/jamapsychiatry.2013.265
Lai, M.-C. et al. Biological sex affects the neurobiology of autism. Brain 136, 2799–2815 (2013).
pubmed: 23935125 pmcid: 3754459 doi: 10.1093/brain/awt216
Yang, D. Y.-J., Beam, D., Pelphrey, K. A., Abdullahi, S. & Jou, R. J. Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Mol. Autism 7, 11 (2016).
pubmed: 26816612 pmcid: 4727390 doi: 10.1186/s13229-016-0076-x
Mensen, V. T. et al. Development of cortical thickness and surface area in autism spectrum disorder. NeuroImage: Clin. 13, 215–222 (2016).
doi: 10.1016/j.nicl.2016.12.003
Haar, S., Berman, S., Behrmann, M. & Dinstein, I. Anatomical abnormalities in autism? Cereb. Cortex 26, 1440–1452 (2016).
pubmed: 25316335 doi: 10.1093/cercor/bhu242
Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).
pubmed: 23774715 doi: 10.1038/mp.2013.78
Georgiades, S., Bishop, S. L. & Frazier, T. Editorial perspective: longitudinal research in autism—introducing the concept of ‘chronogeneity’. J. Child Psychol. Psychiatry 58, 634–636 (2017).
pubmed: 28414862 doi: 10.1111/jcpp.12690
Lord, C., Bishop, S. & Anderson, D. Developmental trajectories as autism phenotypes. Am. J. Med. Genet. C 169, 198–208 (2015).
doi: 10.1002/ajmg.c.31440
Mills, K. L. et al. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage 141, 273–281 (2016).
pubmed: 27453157 pmcid: 5035135 doi: 10.1016/j.neuroimage.2016.07.044
Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011).
pubmed: 22153381 pmcid: 4870892 doi: 10.1016/j.neuron.2011.09.028
Raznahan, A. et al. How does your cortex grow? J. Neurosci. 31, 7174–7177 (2011).
pubmed: 21562281 pmcid: 3157294 doi: 10.1523/JNEUROSCI.0054-11.2011
Marquand, A. F., Rezek, I., Buitelaar, J. K. & Beckmann, C. F. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol. Psychiatry 80, 552–561 (2016).
pubmed: 26927419 pmcid: 5023321 doi: 10.1016/j.biopsych.2015.12.023
Kapur, S., Phillips, A. G. & Insel, T. R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174–1179 (2012).
pubmed: 22869033 doi: 10.1038/mp.2012.105
Jiao, Y. et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50, 589–599 (2011).
doi: 10.1016/j.neuroimage.2009.12.047
Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F. & Evans, A. C. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: a large-scale MRI study. Cereb. Cortex 27, 1721–1731 (2017).
pubmed: 28334080 doi: 10.1093/cercor/bhx038
Moradi, E., Khundrakpam, B., Lewis, J. D., Evans, A. C. & Tohka, J. NeuroImage Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. Neuroimage 144, 128–141 (2017).
pubmed: 27664827 doi: 10.1016/j.neuroimage.2016.09.049
Zielinski, B. A. et al. Longitudinal changes in cortical thickness in autism and typical development. Brain 137, 1799–1812 (2014).
pubmed: 24755274 pmcid: 4032101 doi: 10.1093/brain/awu083
van Rooij, D. et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD Working Group. Am. J. Psychiatry 175, 359–369 (2018).
Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S. & Bethlehem, R. A. I. Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0023-7 (2018).
Courchesne, E. et al. Mapping early brain development in autism. Neuron 56, 399–413 (2007).
pubmed: 17964254 doi: 10.1016/j.neuron.2007.10.016
Courchesne, E., Campbell, K. & Solso, S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 1380, 138–145 (2011).
pubmed: 20920490 doi: 10.1016/j.brainres.2010.09.101
Schumann, C. M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30, 4419–4427 (2010).
pubmed: 20335478 pmcid: 2859218 doi: 10.1523/JNEUROSCI.5714-09.2010
Bethlehem, R. A. I., Seidlitz, J., Romero-Garcia, R., Dumas, G. & Lombardo, M. V. Normative age modelling of cortical thickness in autistic males. Zenodo  https://doi.org/10.5281/ZENODO.1325171 (2018).
Romero-garcia, R., Atienza, M., Clemmensen, L. H. & Cantero, J. L. Effects of network resolution on topological properties of human neocortex. Neuroimage 59, 3522–3532 (2012).
pubmed: 22094643 doi: 10.1016/j.neuroimage.2011.10.086
Cleveland, W. S., Devlin, S. J. & Grosse, E. Regression by local fitting: methods, properties, and computational algorithms. J. Econom. 37, 87–114 (1988).
doi: 10.1016/0304-4076(88)90077-2
Lefebvre, A. et al. Alpha waves as a neuromarker of autism spectrum disorder: the challenge of reproducibility and heterogeneity. Front. Neurosci. 12, 662 (2018).
pubmed: 30327586 pmcid: 6174243 doi: 10.3389/fnins.2018.00662
Brent, R. P. An algorithm with guaranteed convergence for finding a zero of a function. Comput. J. 14, 422–425 (1971).
doi: 10.1093/comjnl/14.4.422
Pardoe, H. R., Kucharsky Hiess, R. & Kuzniecky, R. Motion and morphometry in clinical and nonclinical populations. Neuroimage 135, 177–185 (2016).
pubmed: 27153982 doi: 10.1016/j.neuroimage.2016.05.005
Rosen, A. F. G. et al. Quantitative assessment of structural image quality. Neuroimage 169, 407–418 (2018).
pubmed: 29278774 doi: 10.1016/j.neuroimage.2017.12.059
Byrge, L., Dubois, J., Tyszka, J. M., Adolphs, R. & Kennedy, D. P. Idiosyncratic brain activation patterns are associated with poor social comprehension in autism. J. Neurosci. 35, 5837–5850 (2015).
pubmed: 25855192 pmcid: 4388936 doi: 10.1523/JNEUROSCI.5182-14.2015
Yates, F. Contingency tables involving small numbers and the χ2 test. Suppl. J. R. Stat. Soc. 1, 217–235 (1934).
doi: 10.2307/2983604
Happé, F. & Charlton, R. A. Aging in autism spectrum disorders: a mini-review. Gerontology 58, 70–78 (2012).
pubmed: 21865667 doi: 10.1159/000329720
Geschwind, D. H. & State, M. W. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. 14, 1109–1120 (2015).
pubmed: 25891009 pmcid: 4694565 doi: 10.1016/S1474-4422(15)00044-7
Ellegood, J. et al. A highly specific pattern of volumetric brain changes due to 22q11.2 deletions in both mice and humans. Mol. Psychiatry 19, 6–6 (2014).
pubmed: 24362540 doi: 10.1038/mp.2013.179
Zabihi, M. et al. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 567–578 (2019).
pubmed: 30799285 pmcid: 6551348
Marquand, A. F. et al. Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0441-1 (2019).
Visser, G. H. A., Eilers, P. H. C., Elferink-Stinkens, P. M., Merkus, H. M. W. M. & Wit, J. M. New Dutch reference curves for birthweight by gestational age. Early Hum. Dev. 85, 737–744 (2009).
pubmed: 19914013 doi: 10.1016/j.earlhumdev.2009.09.008
Chen, H. et al. Quantile rank maps: a new tool for understanding individual brain development. Neuroimage 111, 454–463 (2015).
pubmed: 25585020 pmcid: 4387093 doi: 10.1016/j.neuroimage.2014.12.082
Tillmann, J. et al. Investigating the factors underlying adaptive functioning in autism in the EU-AIMS Longitudinal European Autism Project. Autism Res. 12, 645–657 (2019).
pubmed: 30741482 pmcid: 6519242 doi: 10.1002/aur.2081
Van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).
pubmed: 21810475 doi: 10.1016/j.neuroimage.2011.07.044
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
pubmed: 22019881 doi: 10.1016/j.neuroimage.2011.10.018
Savalia, N. K. et al. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum. Brain Mapp. 38, 472–492 (2017).
pubmed: 27634551 doi: 10.1002/hbm.23397
Ho, D. E., Imai, K., King, G. & Stuart, E. A. Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).
doi: 10.18637/jss.v042.i08
Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004).
pubmed: 15219578 doi: 10.1016/j.neuroimage.2004.03.032
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).
pubmed: 9931268 pmcid: 9931268 doi: 10.1006/nimg.1998.0395
Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA 97, 11050–11055 (2000).
pubmed: 10984517 doi: 10.1073/pnas.200033797
Bethlehem, R. A. I., Romero-Garcia, R., Mak, E., Bullmore, E. T. & Baron-Cohen, S. Structural covariance networks in children with autism or ADHD. Cereb. Cortex 27, 4267–4276 (2017).
pubmed: 28633299 pmcid: 5903412 doi: 10.1093/cercor/bhx135
Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).
pubmed: 27457931 doi: 10.1073/pnas.1601745113
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579 pmcid: 4990127 doi: 10.1038/nature18933
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Benjamin, D. J. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 6–10 (2018).
pubmed: 30980045 doi: 10.1038/s41562-017-0189-z
Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinforma. 17, 483 (2016).
doi: 10.1186/s12859-016-1323-z
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Lai, M.-C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 54, 283–297 (2015).
doi: 10.1016/j.jaac.2014.10.003
Lai, M.-C., Baron-Cohen, S. & Buxbaum, J. D. Understanding autism in the light of sex/gender. Mol. Autism 6, 24 (2015).
pubmed: 25973161 pmcid: 4429357 doi: 10.1186/s13229-015-0021-4
Kaczkurkin, A. N., Raznahan, A. & Satterthwaite, T. D. Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology 44, 71–85 (2019).
pubmed: 29930385 doi: 10.1038/s41386-018-0111-z
van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
Hennig, C. & Liao, T. F. How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification. J. R. Stat. Soc. Ser. C 62, 309–369 (2013).
doi: 10.1111/j.1467-9876.2012.01066.x

Auteurs

Richard A I Bethlehem (RAI)

Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK. rb643@medschl.cam.ac.uk.
Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK. rb643@medschl.cam.ac.uk.

Jakob Seidlitz (J)

Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK.
Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.

Rafael Romero-Garcia (R)

Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK.

Stavros Trakoshis (S)

Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.
Department of Psychology, University of Cyprus, Nicosia, Cyprus.

Guillaume Dumas (G)

Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.
CNRS UMR3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.
Human Genetics and Cognitive Functions Unit, University Paris Diderot, Sorbonne Paris Cité, Paris, France.

Michael V Lombardo (MV)

Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK.
Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH