A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
04 09 2020
04 09 2020
Historique:
received:
16
04
2020
accepted:
05
08
2020
entrez:
5
9
2020
pubmed:
6
9
2020
medline:
17
6
2021
Statut:
epublish
Résumé
Understanding heterogeneity is an important goal on the path to precision medicine for autism spectrum disorders (ASD). We examined how cortical thickness (CT) in ASD can be parameterized as an individualized metric of atypicality relative to typically-developing (TD) age-related norms. Across a large sample (n = 870 per group) and wide age range (5-40 years), we applied normative modelling resulting in individualized whole-brain maps of age-related CT atypicality in ASD and isolating a small subgroup with highly age-atypical CT. Age-normed CT scores also highlights on-average differentiation, and associations with behavioural symptomatology that is separate from insights gleaned from traditional case-control approaches. This work showcases an individualized approach for understanding ASD heterogeneity that could potentially further prioritize work on a subset of individuals with cortical pathophysiology represented in age-related CT atypicality. Only a small subset of ASD individuals are actually highly atypical relative to age-norms. driving small on-average case-control differences.
Identifiants
pubmed: 32887930
doi: 10.1038/s42003-020-01212-9
pii: 10.1038/s42003-020-01212-9
pmc: PMC7474067
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
486Subventions
Organisme : Medical Research Council
ID : MR/M009041/1
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Références
Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).
pubmed: 24074734
doi: 10.1016/S0140-6736(13)61539-1
Lombardo, M. V., Lai, M. -C. & Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0321-0 (2019).
Ecker, C. The neuroanatomy of autism spectrum disorder: an overview of structural neuroimaging findings and their translatability to the clinical setting. Autism 21, 18–28 (2017).
pubmed: 26975670
doi: 10.1177/1362361315627136
Hong, S.-J., Bernhardt, B. C., Gill, R. S., Bernasconi, N. & Bernasconi, A. The spectrum of structural and functional network alterations in malformations of cortical development. Brain 140, 2133–2143 (2017).
pubmed: 28899007
doi: 10.1093/brain/awx145
Hong, S.-J. et al. Atypical functional connectome hierarchy in autism. Nat. Commun. 10, 1022 (2019).
pubmed: 30833582
pmcid: 6399265
doi: 10.1038/s41467-019-08944-1
Hong, S.-J., Valk, L., Martino, A. D., Milham, M. P. & Bernhardt, B. C. Multidimensional neuroanatomical subtyping of autism spectrum disorder. Cerebral Cortex 10, 3578–3588 (2018).
doi: 10.1093/cercor/bhx229
Bedford, S. A. et al. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0420-6 (2019).
Schuetze, M. et al. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology 41, 2627–2637 (2016).
pubmed: 27125303
pmcid: 5026732
doi: 10.1038/npp.2016.64
Vissers, M. E., Cohen, M. X. & Geurts, H. M. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci. Biobehav. Rev. 36, 604–625 (2012).
pubmed: 21963441
doi: 10.1016/j.neubiorev.2011.09.003
Ecker, C. et al. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry 70, 59–70 (2013).
pubmed: 23404046
doi: 10.1001/jamapsychiatry.2013.265
Lai, M.-C. et al. Biological sex affects the neurobiology of autism. Brain 136, 2799–2815 (2013).
pubmed: 23935125
pmcid: 3754459
doi: 10.1093/brain/awt216
Yang, D. Y.-J., Beam, D., Pelphrey, K. A., Abdullahi, S. & Jou, R. J. Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Mol. Autism 7, 11 (2016).
pubmed: 26816612
pmcid: 4727390
doi: 10.1186/s13229-016-0076-x
Mensen, V. T. et al. Development of cortical thickness and surface area in autism spectrum disorder. NeuroImage: Clin. 13, 215–222 (2016).
doi: 10.1016/j.nicl.2016.12.003
Haar, S., Berman, S., Behrmann, M. & Dinstein, I. Anatomical abnormalities in autism? Cereb. Cortex 26, 1440–1452 (2016).
pubmed: 25316335
doi: 10.1093/cercor/bhu242
Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).
pubmed: 23774715
doi: 10.1038/mp.2013.78
Georgiades, S., Bishop, S. L. & Frazier, T. Editorial perspective: longitudinal research in autism—introducing the concept of ‘chronogeneity’. J. Child Psychol. Psychiatry 58, 634–636 (2017).
pubmed: 28414862
doi: 10.1111/jcpp.12690
Lord, C., Bishop, S. & Anderson, D. Developmental trajectories as autism phenotypes. Am. J. Med. Genet. C 169, 198–208 (2015).
doi: 10.1002/ajmg.c.31440
Mills, K. L. et al. Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage 141, 273–281 (2016).
pubmed: 27453157
pmcid: 5035135
doi: 10.1016/j.neuroimage.2016.07.044
Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011).
pubmed: 22153381
pmcid: 4870892
doi: 10.1016/j.neuron.2011.09.028
Raznahan, A. et al. How does your cortex grow? J. Neurosci. 31, 7174–7177 (2011).
pubmed: 21562281
pmcid: 3157294
doi: 10.1523/JNEUROSCI.0054-11.2011
Marquand, A. F., Rezek, I., Buitelaar, J. K. & Beckmann, C. F. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol. Psychiatry 80, 552–561 (2016).
pubmed: 26927419
pmcid: 5023321
doi: 10.1016/j.biopsych.2015.12.023
Kapur, S., Phillips, A. G. & Insel, T. R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174–1179 (2012).
pubmed: 22869033
doi: 10.1038/mp.2012.105
Jiao, Y. et al. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50, 589–599 (2011).
doi: 10.1016/j.neuroimage.2009.12.047
Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F. & Evans, A. C. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: a large-scale MRI study. Cereb. Cortex 27, 1721–1731 (2017).
pubmed: 28334080
doi: 10.1093/cercor/bhx038
Moradi, E., Khundrakpam, B., Lewis, J. D., Evans, A. C. & Tohka, J. NeuroImage Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. Neuroimage 144, 128–141 (2017).
pubmed: 27664827
doi: 10.1016/j.neuroimage.2016.09.049
Zielinski, B. A. et al. Longitudinal changes in cortical thickness in autism and typical development. Brain 137, 1799–1812 (2014).
pubmed: 24755274
pmcid: 4032101
doi: 10.1093/brain/awu083
van Rooij, D. et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD Working Group. Am. J. Psychiatry 175, 359–369 (2018).
Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S. & Bethlehem, R. A. I. Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0023-7 (2018).
Courchesne, E. et al. Mapping early brain development in autism. Neuron 56, 399–413 (2007).
pubmed: 17964254
doi: 10.1016/j.neuron.2007.10.016
Courchesne, E., Campbell, K. & Solso, S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 1380, 138–145 (2011).
pubmed: 20920490
doi: 10.1016/j.brainres.2010.09.101
Schumann, C. M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30, 4419–4427 (2010).
pubmed: 20335478
pmcid: 2859218
doi: 10.1523/JNEUROSCI.5714-09.2010
Bethlehem, R. A. I., Seidlitz, J., Romero-Garcia, R., Dumas, G. & Lombardo, M. V. Normative age modelling of cortical thickness in autistic males. Zenodo https://doi.org/10.5281/ZENODO.1325171 (2018).
Romero-garcia, R., Atienza, M., Clemmensen, L. H. & Cantero, J. L. Effects of network resolution on topological properties of human neocortex. Neuroimage 59, 3522–3532 (2012).
pubmed: 22094643
doi: 10.1016/j.neuroimage.2011.10.086
Cleveland, W. S., Devlin, S. J. & Grosse, E. Regression by local fitting: methods, properties, and computational algorithms. J. Econom. 37, 87–114 (1988).
doi: 10.1016/0304-4076(88)90077-2
Lefebvre, A. et al. Alpha waves as a neuromarker of autism spectrum disorder: the challenge of reproducibility and heterogeneity. Front. Neurosci. 12, 662 (2018).
pubmed: 30327586
pmcid: 6174243
doi: 10.3389/fnins.2018.00662
Brent, R. P. An algorithm with guaranteed convergence for finding a zero of a function. Comput. J. 14, 422–425 (1971).
doi: 10.1093/comjnl/14.4.422
Pardoe, H. R., Kucharsky Hiess, R. & Kuzniecky, R. Motion and morphometry in clinical and nonclinical populations. Neuroimage 135, 177–185 (2016).
pubmed: 27153982
doi: 10.1016/j.neuroimage.2016.05.005
Rosen, A. F. G. et al. Quantitative assessment of structural image quality. Neuroimage 169, 407–418 (2018).
pubmed: 29278774
doi: 10.1016/j.neuroimage.2017.12.059
Byrge, L., Dubois, J., Tyszka, J. M., Adolphs, R. & Kennedy, D. P. Idiosyncratic brain activation patterns are associated with poor social comprehension in autism. J. Neurosci. 35, 5837–5850 (2015).
pubmed: 25855192
pmcid: 4388936
doi: 10.1523/JNEUROSCI.5182-14.2015
Yates, F. Contingency tables involving small numbers and the χ2 test. Suppl. J. R. Stat. Soc. 1, 217–235 (1934).
doi: 10.2307/2983604
Happé, F. & Charlton, R. A. Aging in autism spectrum disorders: a mini-review. Gerontology 58, 70–78 (2012).
pubmed: 21865667
doi: 10.1159/000329720
Geschwind, D. H. & State, M. W. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. 14, 1109–1120 (2015).
pubmed: 25891009
pmcid: 4694565
doi: 10.1016/S1474-4422(15)00044-7
Ellegood, J. et al. A highly specific pattern of volumetric brain changes due to 22q11.2 deletions in both mice and humans. Mol. Psychiatry 19, 6–6 (2014).
pubmed: 24362540
doi: 10.1038/mp.2013.179
Zabihi, M. et al. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 567–578 (2019).
pubmed: 30799285
pmcid: 6551348
Marquand, A. F. et al. Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0441-1 (2019).
Visser, G. H. A., Eilers, P. H. C., Elferink-Stinkens, P. M., Merkus, H. M. W. M. & Wit, J. M. New Dutch reference curves for birthweight by gestational age. Early Hum. Dev. 85, 737–744 (2009).
pubmed: 19914013
doi: 10.1016/j.earlhumdev.2009.09.008
Chen, H. et al. Quantile rank maps: a new tool for understanding individual brain development. Neuroimage 111, 454–463 (2015).
pubmed: 25585020
pmcid: 4387093
doi: 10.1016/j.neuroimage.2014.12.082
Tillmann, J. et al. Investigating the factors underlying adaptive functioning in autism in the EU-AIMS Longitudinal European Autism Project. Autism Res. 12, 645–657 (2019).
pubmed: 30741482
pmcid: 6519242
doi: 10.1002/aur.2081
Van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).
pubmed: 21810475
doi: 10.1016/j.neuroimage.2011.07.044
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
pubmed: 22019881
doi: 10.1016/j.neuroimage.2011.10.018
Savalia, N. K. et al. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum. Brain Mapp. 38, 472–492 (2017).
pubmed: 27634551
doi: 10.1002/hbm.23397
Ho, D. E., Imai, K., King, G. & Stuart, E. A. Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).
doi: 10.18637/jss.v042.i08
Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004).
pubmed: 15219578
doi: 10.1016/j.neuroimage.2004.03.032
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).
pubmed: 9931268
pmcid: 9931268
doi: 10.1006/nimg.1998.0395
Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA 97, 11050–11055 (2000).
pubmed: 10984517
doi: 10.1073/pnas.200033797
Bethlehem, R. A. I., Romero-Garcia, R., Mak, E., Bullmore, E. T. & Baron-Cohen, S. Structural covariance networks in children with autism or ADHD. Cereb. Cortex 27, 4267–4276 (2017).
pubmed: 28633299
pmcid: 5903412
doi: 10.1093/cercor/bhx135
Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).
pubmed: 27457931
doi: 10.1073/pnas.1601745113
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579
pmcid: 4990127
doi: 10.1038/nature18933
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Benjamin, D. J. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 6–10 (2018).
pubmed: 30980045
doi: 10.1038/s41562-017-0189-z
Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinforma. 17, 483 (2016).
doi: 10.1186/s12859-016-1323-z
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Lai, M.-C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 54, 283–297 (2015).
doi: 10.1016/j.jaac.2014.10.003
Lai, M.-C., Baron-Cohen, S. & Buxbaum, J. D. Understanding autism in the light of sex/gender. Mol. Autism 6, 24 (2015).
pubmed: 25973161
pmcid: 4429357
doi: 10.1186/s13229-015-0021-4
Kaczkurkin, A. N., Raznahan, A. & Satterthwaite, T. D. Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology 44, 71–85 (2019).
pubmed: 29930385
doi: 10.1038/s41386-018-0111-z
van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
Hennig, C. & Liao, T. F. How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification. J. R. Stat. Soc. Ser. C 62, 309–369 (2013).
doi: 10.1111/j.1467-9876.2012.01066.x