Image improvement in linear-array photoacoustic imaging using high resolution coherence factor weighting technique.

Linear-array tomography Photoacoustic imaging Resolution improvement

Journal

BMC biomedical engineering
ISSN: 2524-4426
Titre abrégé: BMC Biomed Eng
Pays: England
ID NLM: 101756092

Informations de publication

Date de publication:
2019
Historique:
received: 24 09 2018
accepted: 22 03 2019
entrez: 9 9 2020
pubmed: 5 4 2019
medline: 5 4 2019
Statut: epublish

Résumé

In Photoacoustic imaging (PAI), the most prevalent beamforming algorithm is delay-and-sum (DAS) due to its simple implementation. However, it results in a low quality image affected by the high level of sidelobes. Coherence factor (CF) can be used to address the sidelobes in the reconstructed images by DAS, but the resolution improvement is not good enough, compared to the high resolution beamformers such as minimum variance (MV). In this paper, it is proposed to use high-resolution-CF (HRCF) weighting technique in which MV is used instead of the existing DAS in the formula of the conventional CF. The higher performance of HRCF is proved numerically and experimentally. The quantitative results obtained with the simulations show that at the depth of 40 Proposed method provides a high resolution along with a low level of sidelobes for PAI.

Sections du résumé

BACKGROUND BACKGROUND
In Photoacoustic imaging (PAI), the most prevalent beamforming algorithm is delay-and-sum (DAS) due to its simple implementation. However, it results in a low quality image affected by the high level of sidelobes. Coherence factor (CF) can be used to address the sidelobes in the reconstructed images by DAS, but the resolution improvement is not good enough, compared to the high resolution beamformers such as minimum variance (MV). In this paper, it is proposed to use high-resolution-CF (HRCF) weighting technique in which MV is used instead of the existing DAS in the formula of the conventional CF.
RESULTS RESULTS
The higher performance of HRCF is proved numerically and experimentally. The quantitative results obtained with the simulations show that at the depth of 40
CONCLUSION CONCLUSIONS
Proposed method provides a high resolution along with a low level of sidelobes for PAI.

Identifiants

pubmed: 32903375
doi: 10.1186/s42490-019-0009-9
pii: 9
pmc: PMC7422598
doi:

Types de publication

Journal Article

Langues

eng

Pagination

10

Informations de copyright

© The Author(s) 2019.

Déclaration de conflit d'intérêts

Competing interestsThe authors declare that they have no competing interests.

Références

IEEE Trans Med Imaging. 2015 Dec;34(12):2443-58
pubmed: 26641726
IEEE Pulse. 2015 May-Jun;6(3):42-6
pubmed: 25974915
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 May;62(5):814-27
pubmed: 25965676
Interface Focus. 2011 Aug 6;1(4):602-31
pubmed: 22866233
Ultrasound Med Biol. 2018 Mar;44(3):677-686
pubmed: 29276138
Opt Lett. 2010 Feb 1;35(3):270-2
pubmed: 20125691
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):683-93
pubmed: 22547279
IEEE Trans Biomed Eng. 2014 May;61(5):1380-9
pubmed: 24108456
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2381-90
pubmed: 21041127
IEEE Trans Med Imaging. 2012 Oct;31(10):1912-21
pubmed: 22868562
J Biomed Opt. 2010 Mar-Apr;15(2):021314
pubmed: 20459236
Nat Biotechnol. 2003 Jul;21(7):803-6
pubmed: 12808463
J Biomed Opt. 2016 Jun;21(6):61007
pubmed: 27086868
J Biomed Opt. 2018 Feb;23(2):1-15
pubmed: 29405047
Mol Imaging. 2011 Apr;10(2):102-10
pubmed: 21439255
Biomed Opt Express. 2011 Jan 21;2(2):385-96
pubmed: 21339883
IEEE Trans Biomed Eng. 2007 Nov;54(11):2000-10
pubmed: 18018695
Curr Mol Imaging. 2013 Mar;2(1):89-105
pubmed: 24032095
Neuroimage. 2013 Jan 1;64:257-66
pubmed: 22940116
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;56(9):1868-79
pubmed: 19811990
IEEE Trans Biomed Eng. 2018 Jan;65(1):31-42
pubmed: 28391187
IEEE Photonics J. 2014 Apr;6(2):
pubmed: 25383143
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1329-46
pubmed: 20529709
Biomed Opt Express. 2013 Sep 04;4(10):1964-77
pubmed: 24156057
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):660-7
pubmed: 22547277
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Aug;54(8):1606-13
pubmed: 17703664
IEEE Trans Med Imaging. 2015 Apr;34(4):940-9
pubmed: 25420256
Ultrasonics. 2016 Mar;66:43-53
pubmed: 26678788
Laser Photon Rev. 2013 Sep 1;7(5):
pubmed: 24416085
IEEE Trans Med Imaging. 2002 Jul;21(7):814-22
pubmed: 12374318
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Sep;62(9):1651-61
pubmed: 26415127
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;56(9):1923-31
pubmed: 19811995
J Biophotonics. 2019 Jun;12(6):e201800292
pubmed: 30302920
Photoacoustics. 2018 Sep 18;12:22-29
pubmed: 30294542
IEEE Trans Med Imaging. 2002 Jul;21(7):823-8
pubmed: 12374319
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2097-110
pubmed: 19942498
IEEE Trans Med Imaging. 2002 Jul;21(7):829-33
pubmed: 12374320
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):21-6
pubmed: 24367107
J Biomed Opt. 2018 Feb;23(2):1-10
pubmed: 29446261
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Oct;58(10):2259-63
pubmed: 21989890

Auteurs

Moein Mozaffarzadeh (M)

Research Center for Biomedical Technologies and Robotics, Institute for Advanced Medical Technologies, Tehran, Iran.
Department of Imaging Physics, Laboratory of Acoustical Wavefield Imaging, Delft University of Technology, Delft, Netherlands.

Bahador Makkiabadi (B)

Research Center for Biomedical Technologies and Robotics, Institute for Advanced Medical Technologies, Tehran, Iran.
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Maryam Basij (M)

Department of Biomedical Engineering, Wayne State University, Detroit, Michigan USA.

Mohammad Mehrmohammadi (M)

Department of Biomedical Engineering, Wayne State University, Detroit, Michigan USA.

Classifications MeSH