Plasma proteins facilitates placental transfer of polystyrene particles.
Biocorona
Dual ex vivo placental perfusion
Human placenta
Nanoparticle
Plasma proteins
Polystyrene
Transfer
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
09 Sep 2020
09 Sep 2020
Historique:
received:
10
06
2020
accepted:
13
08
2020
entrez:
10
9
2020
pubmed:
11
9
2020
medline:
7
7
2021
Statut:
epublish
Résumé
Nanoparticles, which are exposed to biological fluids are rapidly interacting with proteins and other biomolecules forming a corona. In addition to dimension, charge and material the distinct protein corona influences the interplay of nanoparticles with tissue barriers. In this study we were focused on the impact of in situ formed human plasma protein corona on the transfer of 80 nm polystyrene nanoparticles (PS-particles) across the human placenta. To study materno-to fetal PS transfer we used the human ex vivo placental perfusion approach, which represents an intact and physiological tissue barrier. To analyze the protein corona of PS particles we performed shotgun proteomics of isolated nanoparticles before and after tissue exposure. Human plasma incubated with PS-particles of 80 nm and subsequent formed protein corona enhanced the transfer across the human placenta compared to PS-corona formed by bovine serum albumin and dextran which served as a control. Quantitative and qualitative changes of plasma proteins determined the changes in PS transfer across the barrier. Based on the analysis of the PS-proteome two candidate proteins, namely human albumin and immunoglobulin G were tested if these proteins may account for the enhanced PS-transfer across the placenta. Interestingly, the protein corona formed by human albumin significantly induced the transfer of PS-particles across the tissue compared to the formed IgG-corona. In total we demonstrate the PS corona dynamically and significantly evolves upon crossing the human placenta. Thus, the initial composition of PS particles in the maternal circulation is not predictive for their transfer characteristics and performance once beyond the barrier of the placenta. The precise mechanism of these effects remains to be elucidated but highlights the importance of using well designed biological models when testing nanoparticles for biomedical applications.
Sections du résumé
BACKGROUND
BACKGROUND
Nanoparticles, which are exposed to biological fluids are rapidly interacting with proteins and other biomolecules forming a corona. In addition to dimension, charge and material the distinct protein corona influences the interplay of nanoparticles with tissue barriers. In this study we were focused on the impact of in situ formed human plasma protein corona on the transfer of 80 nm polystyrene nanoparticles (PS-particles) across the human placenta. To study materno-to fetal PS transfer we used the human ex vivo placental perfusion approach, which represents an intact and physiological tissue barrier. To analyze the protein corona of PS particles we performed shotgun proteomics of isolated nanoparticles before and after tissue exposure.
RESULTS
RESULTS
Human plasma incubated with PS-particles of 80 nm and subsequent formed protein corona enhanced the transfer across the human placenta compared to PS-corona formed by bovine serum albumin and dextran which served as a control. Quantitative and qualitative changes of plasma proteins determined the changes in PS transfer across the barrier. Based on the analysis of the PS-proteome two candidate proteins, namely human albumin and immunoglobulin G were tested if these proteins may account for the enhanced PS-transfer across the placenta. Interestingly, the protein corona formed by human albumin significantly induced the transfer of PS-particles across the tissue compared to the formed IgG-corona.
CONCLUSION
CONCLUSIONS
In total we demonstrate the PS corona dynamically and significantly evolves upon crossing the human placenta. Thus, the initial composition of PS particles in the maternal circulation is not predictive for their transfer characteristics and performance once beyond the barrier of the placenta. The precise mechanism of these effects remains to be elucidated but highlights the importance of using well designed biological models when testing nanoparticles for biomedical applications.
Identifiants
pubmed: 32907583
doi: 10.1186/s12951-020-00676-5
pii: 10.1186/s12951-020-00676-5
pmc: PMC7487953
doi:
Substances chimiques
Blood Proteins
0
Immunoglobulin G
0
Immunoglobulins
0
Polystyrenes
0
Protein Corona
0
Serum Globulins
0
Serum Albumin, Bovine
27432CM55Q
plasma protein fraction
6D53G0FD0Z
Serum Albumin, Human
ZIF514RVZR
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
128Subventions
Organisme : Austrian Science Fund FWF
ID : DOC 31
Pays : Austria
Références
Chem Soc Rev. 2015 Oct 7;44(17):6094-121
pubmed: 26065524
Am J Obstet Gynecol. 1972 Nov 15;114(6):822-8
pubmed: 4676572
Placenta. 2013 Nov;34(11):1105-9
pubmed: 23978537
Biomaterials. 2009 Feb;30(4):603-10
pubmed: 19012960
Bioconjug Chem. 2019 Apr 17;30(4):1067-1076
pubmed: 30821961
J Nanobiotechnology. 2020 Feb 17;18(1):28
pubmed: 32066442
Clin Pharmacol Ther. 2011 Jul;90(1):67-76
pubmed: 21562489
Nanoscale. 2017 Sep 21;9(36):13651-13660
pubmed: 28875999
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56
pubmed: 26527722
Nat Nanotechnol. 2018 May;13(5):427-433
pubmed: 29610530
Toxicol Appl Pharmacol. 2018 Mar 1;342:60-68
pubmed: 29407774
PLoS One. 2017 Apr 17;12(4):e0175871
pubmed: 28414772
ACS Nano. 2018 Jul 24;12(7):7292-7300
pubmed: 29953205
Nat Nanotechnol. 2013 Oct;8(10):772-81
pubmed: 24056901
ACS Nano. 2015 Dec 22;9(12):11872-85
pubmed: 26575243
J Nanobiotechnology. 2018 Sep 15;16(1):70
pubmed: 30219059
Materials (Basel). 2019 Sep 28;12(19):
pubmed: 31569341
Swiss Med Wkly. 2012 Apr 05;142:w13559
pubmed: 22481566
Nanotoxicology. 2015 May;9 Suppl 1:79-86
pubmed: 23742169
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70
pubmed: 18809927
Eur J Pharm Biopharm. 2002 Sep;54(2):165-70
pubmed: 12191688
Int J Biochem Cell Biol. 2016 Jun;75:188-95
pubmed: 26643610
J Lipid Res. 2017 Feb;58(2):443-454
pubmed: 27913585
Environ Pollut. 2019 Dec;255(Pt 3):113348
pubmed: 31610388
J Nanobiotechnology. 2012 Sep 24;10:39
pubmed: 23006133
Cell Biol Toxicol. 2014 Feb;30(1):31-53
pubmed: 24463955
Obstet Gynecol. 2009 Dec;114(6):1326-31
pubmed: 19935037
J Nanobiotechnology. 2015 Nov 18;13:84
pubmed: 26582370
Acta Naturae. 2013 Jul;5(3):107-15
pubmed: 24307938
Environ Health Perspect. 2010 Mar;118(3):432-6
pubmed: 20064770
J Nanobiotechnology. 2013 Jul 19;11:26
pubmed: 23870291
Contrib Gynecol Obstet. 1985;13:40-7
pubmed: 3995981
Pharm Res. 1997 Jan;14(1):18-24
pubmed: 9034216
J Nanobiotechnology. 2018 Oct 11;16(1):79
pubmed: 30309365
Nanoscale. 2017 Jun 29;9(25):8858-8870
pubmed: 28632260
Small. 2019 May;15(22):e1900974
pubmed: 31021510
Lab Chip. 2019 Aug 7;19(15):2557-2567
pubmed: 31243412
Toxicol Lett. 2014 Oct 1;230(1):10-8
pubmed: 25102025
Chem Biol Interact. 2018 Dec 25;296:124-133
pubmed: 30273564
Ann Intern Med. 2019 Oct 1;171(7):453-457
pubmed: 31476765
Nat Nanotechnol. 2009 Feb;4(2):84-5
pubmed: 19197306
Toxicol In Vitro. 2015 Oct;29(7):1701-10
pubmed: 26145586
Nat Nanotechnol. 2012 Dec;7(12):779-86
pubmed: 23212421
J Clin Invest. 1964 Oct;43:1938-51
pubmed: 14236218
J Nanobiotechnology. 2016 Jul 07;14(1):55
pubmed: 27388915
Environ Pollut. 2020 Jun;261:114158
pubmed: 32088433
Int J Pharm. 2017 Nov 5;532(2):729-737
pubmed: 28757257
J Am Chem Soc. 2011 Mar 2;133(8):2525-34
pubmed: 21288025
Environ Health Perspect. 2015 Dec;123(12):1280-6
pubmed: 25956008
ACS Nano. 2011 Sep 27;5(9):7503-9
pubmed: 21861491
Nanomedicine (Lond). 2016 Apr;11(8):941-57
pubmed: 26979802
ACS Nano. 2009 Dec 22;3(12):4110-6
pubmed: 19919048
Nanotoxicology. 2017 May;11(4):507-519
pubmed: 28420299
Trends Biotechnol. 2017 Mar;35(3):257-264
pubmed: 27663778
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Nanotoxicology. 2018 Mar;12(2):90-103
pubmed: 29334310
J Control Release. 2011 Mar 30;150(3):326-38
pubmed: 21129423
Biol Reprod. 2013 Apr 11;88(4):88
pubmed: 23467739
Adv Mater. 2019 Nov;31(45):e1805740
pubmed: 30589115
Int J Pharm. 2000 Mar 10;196(2):245-9
pubmed: 10699728
Nanomedicine (Lond). 2018 Jun;13(11):1255-1265
pubmed: 29949465
Placenta. 2009 Mar;30(3):277-83
pubmed: 19215982
PLoS Pathog. 2018 Aug 30;14(8):e1007161
pubmed: 30161231
ACS Nano. 2017 Dec 26;11(12):11773-11776
pubmed: 29206030
Methods Mol Biol. 2017;1494:239-252
pubmed: 27718198
Nanoscale. 2018 Jul 5;10(25):11980-11991
pubmed: 29904776
Nanoscale. 2016 Mar 14;8(10):5526-36
pubmed: 26804616
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
J Drug Target. 2002 Jun;10(4):317-25
pubmed: 12164380
J Control Release. 2016 Aug 10;235:337-351
pubmed: 27297779
Reprod Toxicol. 2010 Aug;30(1):138-46
pubmed: 20096346
Small. 2018 Jul;14(27):e1800462
pubmed: 29855134
Nanoscale. 2016 Oct 06;8(39):17322-17332
pubmed: 27714104
Nat Protoc. 2014 Sep;9(9):2030-44
pubmed: 25079427
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
J Histochem Cytochem. 1995 Aug;43(8):791-800
pubmed: 7622842
Nanotechnology. 2018 Feb 23;29(8):085101
pubmed: 29256442
Nat Mater. 2009 Jul;8(7):543-57
pubmed: 19525947
Int J Dev Biol. 2010;54(2-3):367-75
pubmed: 19876831
Nanoscale. 2018 Aug 16;10(32):15249-15261
pubmed: 30066709
Biomaterials. 2016 Jan;75:295-304
pubmed: 26513421