Surface warming reacceleration in offshore China and its interdecadal effects on the East Asia-Pacific climate.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 09 2020
09 09 2020
Historique:
received:
10
01
2020
accepted:
24
08
2020
entrez:
10
9
2020
pubmed:
11
9
2020
medline:
11
9
2020
Statut:
epublish
Résumé
Since the late 1970s, sea surface temperatures (SSTs) have exhibited greater responses to global warming in the offshore area of China and adjacent seas (offshore China) than in the global ocean. This study identified a surface warming reacceleration in offshore China since 2011, following a well-known interdecadal shift from offshore surface warming to cooling in 1998. During the warming reacceleration period, the rate of increase in offshore China SSTs was twice the mean rate of global ocean surface warming, and the significantly warming area was primarily in the north, especially in the East China Sea. Concurrent with the ascending phase of the Interdecadal Pacific Oscillation, a large area of positive sea level pressure anomalies developed over the tropical Pacific. Accordingly, the surface southerly wind anomalies contributed to the recent surface warming in offshore China, especially in the East China Sea. With greater changes in the warming rate, the spatial mode of the circulation anomalies over East Asia and the western Pacific has shifted westward and has exerted more inshore influence during the recent warming reacceleration period than during the previous periods.
Identifiants
pubmed: 32908181
doi: 10.1038/s41598-020-71862-6
pii: 10.1038/s41598-020-71862-6
pmc: PMC7481234
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14811Références
IPCC. Summary for policymakers. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 3–29 (Cambridge University Press, 2013).
Yao, S.-L., Luo, J.-J., Huang, G. & Wang, P. Distinct global warming rates tied to multiple ocean surface temperature changes. Nat. Clim. Change 7, 486 (2017).
Folland, C. K., Boucher, O., Colman, A. & Parker, D. E. Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci. Adv. 4, eaao5297 (2018).
pubmed: 29881771
pmcid: 5990305
Maslanik, J. A., Serreze, M. C. & Barry, R. G. Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies. Geophys. Res. Lett. 23, 1677–1680 (1996).
Haeberli, W. & Beniston, M. Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27, 258–265 (1998).
Cabanes, C., Cazenave, A. & Le Provost, C. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840–842 (2001).
pubmed: 11679666
Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537 (2009).
Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161 (2006).
pubmed: 16407945
Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161 (2012).
Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 545, 41–47 (2017).
pubmed: 28470193
Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).
pubmed: 26394551
pmcid: 4585812
Peyser, C. E., Yin, J., Landerer, F. W. & Cole, J. E. Pacific sea level rise patterns and global surface temperature variability. Geophys. Res. Lett. 43, 8662–8669 (2016).
Barcikowska, M. J., Knutson, T. R. & Zhang, R. Observed and simulated fingerprints of multidecadal climate variability and their contributions to periods of global SST stagnation. J. Clim. 30, 721–737 (2017).
Dong, B. & Dai, A. The influence of the interdecadal pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 45, 2667–2681 (2015).
Liao, E., Lu, W., Yan, X. H., Jiang, Y. & Kidwell, A. The coastal ocean response to the global warming acceleration and hiatus. Sci. Rep. 5, 1–10 (2015).
NASA-GISS. 2018 Fourth Warmest Year in Continued Warming Trend. Nasa 1 https://climate.nasa.gov/news/2841/2018-fourth-warmest-year-in-continued-warming-trend-according-to-nasa-noaa/ (2019).
Trenberth, K. E. Has there been a hiatus? Science 349, 691–692 (2015).
Yan, X. et al. The global warming hiatus: Slowdown or redistribution?. Earth’s Future 4, 472–482 (2016).
pubmed: 31423452
pmcid: 6686362
Xie, S.-P. & Kosaka, Y. What caused the global surface warming hiatus of 1998–2013?. Curr. Clim. Change Rep. 3, 128–140 (2017).
Zhang, C., Li, S., Luo, F. & Huang, Z. The global warming hiatus has faded away: an analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 39, 4853–4868 (2019).
Su, J., Zhang, R. & Wang, H. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Sci. Rep. 7, 43735 (2017).
pubmed: 28256561
pmcid: 5335651
Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).
pubmed: 11739947
Hewitson, B. et al. Regional context. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) 1133–1197 (Cambridge University Press, Cambridge, 2014).
Hoegh-Guldberg, O. et al. The Ocean. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) 1655–1731 (Cambridge University Press, Cambridge, 2014).
Cai, R., Chen, J. & Huang, R. The response of marine environment in the offshore area of China and its adjacent ocean to recent global climate change. Chin. J. Atmos. Sci. 30, 1019–1033 (2006).
Cai, R. & Tan, H. Influence of interdecadal climate variation over East Asia on offshore ecological system of China. J. Oceanogr. Taiwan Strait 29, 173–183 (2010).
Cai, R., Chen, J. & Tan, H. Variations of the sea surface temperature in the offshore area of China and their relationship with the East Asian monsoon under the global warming. Clim. Environ. Res. 16, 94–104 (2011).
Tan, H., Cai, R. & Huang, R. Enhanced responses of sea surface temperature over offshore China to global warming and Hiatus. Clim. Change Res. 12, 500–507 (2016).
Cai, R., Tan, H. & Qi, Q. Impacts of and adaptation to inter-decadal marine climate change in coastal China seas. Int. J. Climatol. 36, 3770–3780 (2016).
Cai, R., Tan, H. & Kontoyiannis, H. Robust surface warming in offshore China seas and its relationship to the East Asian monsoon wind field and ocean forcing on interdecadal time scales. J. Clim. 30, 8987–9005 (2017).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D Atmos. 108, 4407 (2003).
Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 865–879 (2005).
Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos. 117, D08101 (2012).
Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).
Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).
Yeh, S.-W. & Kim, C.-H. Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation. Cont. Shelf Res. 30, 1428–1434 (2010).
Bao, B. & Ren, G. Climatological characteristics and long-term change of SST over the marginal seas of China. Cont. Shelf Res. 77, 96–106 (2014).
Park, K.-A., Lee, E.-Y., Chang, E. & Hong, S. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Syst. 143, 24–38 (2015).
Kim, Y. S., Jang, C. J. & Yeh, S.-W. Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift. Cont. Shelf Res. 156, 43–54 (2018).
Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: a new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).
Wu, R., Li, C. & Lin, J. Enhanced winter warming in the Eastern China coastal waters and its relationship with ENSO. Atmos. Sci. Lett. 18, 11–18 (2017).
Zhang, L., Wu, L., Lin, X. & Wu, D. Modes and mechanisms of sea surface temperature low-frequency variations over the coastal China Seas. J. Geophys. Res. 115, C08301 (2010).
Tan, H. & Cai, R. What caused the record-breaking warming in East China Seas during August 2016?. Atmos. Sci. Lett. 19, e853 (2018).
Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Ann. Rev. Mar. Sci. 2, 115–143 (2010).
pubmed: 21141660
Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555 (2015).
Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 7, 11718 (2016).
pubmed: 27251760
pmcid: 4895720
Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 1–10 (2017).
Cheng, L. et al. Record-Setting Ocean Warmth Continued in 2019. (2020).
Huang, P., Chen, D. & Ying, J. Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming. J. Clim. 30, 8149–8158 (2017).
Ying, J., Huang, P. & Lian, T. Changes in the sensitivity of tropical rainfall response to local sea surface temperature anomalies under global warming. Int. J. Climatol. 39, 5801–5814 (2019).
Gray, W. M. Global view of the origin of tropical disturbances and storms. J. Clim. 96, 669–700 (1968).
Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403 (2013).
pubmed: 23995690
Meehl, G. A., Hu, A., Santer, B. D. & Xie, S.-P. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Change 6, 1005–1008 (2016).
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).
Collins, M. et al. Extremes, abrupt changes and managing risk. InL IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.), pp. 589–655 (2019).
He, X. & Gong, D. Interdecadal change in western Pacific subtropical high and climatic effects. J. Geogr. Sci. 12, 202–209 (2002).
Zhou, T. et al. Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 22, 2199–2215 (2009).
Knutson, T. R. & Tuleya, R. E. Impact of CO
Liebmann, B. & Smith, C. A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 77, 1275–1277 (1996).
Kanamitsu, M. et al. Ncep–doe amip-ii reanalysis (r-2). Bull. Am. Meteorol. Soc. 83, 1631–1644 (2002).
Hua, W., Dai, A. & Qin, M. Contributions of internal variability and external forcing to the recent Pacific decadal variations. Geophys. Res. Lett. 45, 7084–7092 (2018).
Sung, M.-K. et al. Tropical influence on the North Pacific Oscillation drives winter extremes in North America. Nat. Clim. Change 9, 413–418 (2019).