Combined whole-mount fluorescence in situ hybridization and antibody staining in zebrafish embryos and larvae.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
10 2020
Historique:
received: 25 04 2019
accepted: 19 06 2020
pubmed: 11 9 2020
medline: 4 11 2020
entrez: 10 9 2020
Statut: ppublish

Résumé

RNA fluorescence in situ hybridization (FISH) and antibody staining/immunofluorescence (IF) are widely used to detect distributions of mRNAs and proteins. Here we describe a combined FISH and IF protocol to simultaneously detect multiple mRNAs and proteins in whole-mount zebrafish embryos and larvae. In our approach, FISH is performed before IF to prevent mRNA degradation during the IF procedure. Instead of proteinase K digestion, Triton X-100 treatment and skin removal are used to permeate tissues and preserve antigen epitopes, making this protocol applicable to both whole-mount embryos and larvae. Off-target hybridization and FISH background are reduced by using PCR-amplified DNA templates and stringent buffers. This protocol simultaneously detects multiple mRNAs and proteins with high sensitivity, and enables detection at single-cell resolution. The protocol can be completed within 6 days, overcoming the shortage of reliable antibodies available for zebrafish and exploiting the advantages of zebrafish for studying organ development and regeneration.

Identifiants

pubmed: 32908315
doi: 10.1038/s41596-020-0376-7
pii: 10.1038/s41596-020-0376-7
doi:

Substances chimiques

Antibodies 0
RNA, Messenger 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3361-3379

Références

Harding, K., Wedeen, C., McGinnis, W. & Levine, M. Spatially regulated expression of homeotic genes in Drosophila. Science 229, 1236–1242 (1985).
pubmed: 3898362 doi: 10.1126/science.3898362
Vize, P. D., McCoy, K. E. & Zhou, X. Multichannel wholemount fluorescent and fluorescent/chromogenic in situ hybridization in Xenopus embryos. Nat. Protoc. 4, 975–983 (2009).
pubmed: 19498377 doi: 10.1038/nprot.2009.69
Broadbent, J. & Read, E. M. Wholemount in situ hybridization of Xenopus and zebrafish embryos. Methods Mol. Biol. 127, 57–67 (1999).
pubmed: 10503224 doi: 10.1385/1-59259-678-9:57
Fienberg, A. A. et al. Homeo box genes in murine development. Curr. Top. Dev. Biol. 23, 233–256 (1987).
pubmed: 2897895 doi: 10.1016/S0070-2153(08)60627-4
Speel, E. J., Hopman, A. H. & Komminoth, P. Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J. Histochem. Cytochem. 47, 281–288 (1999).
pubmed: 10026231 doi: 10.1177/002215549904700302
Speel, E. J., Saremaslani, P., Roth, J., Hopman, A. H. & Komminoth, P. Improved mRNA in situ hybridization on formaldehyde-fixed and paraffin-embedded tissue using signal amplification with different haptenized tyramides. Histochem. Cell Biol. 110, 571–577 (1998).
pubmed: 9860255 doi: 10.1007/s004180050319
Baldino, F. Jr., Chesselet, M. F. & Lewis, M. E. High-resolution in situ hybridization histochemistry. Methods Enzymol. 168, 761–777 (1989).
pubmed: 2725322 doi: 10.1016/0076-6879(89)68057-3
McDougall, J. K., Dunn, A. R. & Jones, K. W. In situ hybridization of adenovirus RNA and DNA. Nature 236, 346–348 (1972).
pubmed: 4553646 doi: 10.1038/236346a0
Wilkinson, D. G., Bhatt, S., Chavrier, P., Bravo, R. & Charnay, P. Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464 (1989).
pubmed: 2915691 doi: 10.1038/337461a0
Springer, J. E., Robbins, E., Gwag, B. J., Lewis, M. E. & Baldino, F. Jr. Non-radioactive detection of nerve growth factor receptor (NGFR) mRNA in rat brain using in situ hybridization histochemistry. J. Histochem. Cytochem. 39, 231–234 (1991).
pubmed: 1846159 doi: 10.1177/39.2.1846159
Lauter, G., Soll, I. & Hauptmann, G. Sensitive whole-mount fluorescent in situ hybridization in zebrafish using enhanced tyramide signal amplification. Methods Mol. Biol. 1082, 175–185 (2014).
pubmed: 24048934 doi: 10.1007/978-1-62703-655-9_12
Bobrow, M. N., Litt, G. J., Shaughnessy, K. J., Mayer, P. C. & Conlon, J. The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J. Immunol. Methods 150, 145–149 (1992).
pubmed: 1613251 doi: 10.1016/0022-1759(92)90073-3
Zaidi, A. U., Enomoto, H., Milbrandt, J. & Roth, K. A. Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J. Histochem. Cytochem. 48, 1369–1375 (2000).
pubmed: 10990490 doi: 10.1177/002215540004801007
Pepe, F. A. Analysis of antibody staining patterns obtained with striated myofibrils in fluorescence microscopy and electron microscopy. Int. Rev. Cytol. 24, 193–231 (1968).
pubmed: 4177631 doi: 10.1016/S0074-7696(08)61400-X
Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).
pubmed: 9007226
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).
pubmed: 23594743 pmcid: 3703927 doi: 10.1038/nature12111
Thisse, B. & Thisse, C. In situ hybridization on whole-mount zebrafish embryos and young larvae. Methods Mol. Biol. 1211, 53–67 (2014).
pubmed: 25218376 doi: 10.1007/978-1-4939-1459-3_5
Toledano, H., D’Alterio, C., Loza-Coll, M. & Jones, D. L. Dual fluorescence detection of protein and RNA in Drosophila tissues. Nat. Protoc. 7, 1808–1817 (2012).
pubmed: 22976352 pmcid: 4821427 doi: 10.1038/nprot.2012.105
Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).
pubmed: 22166544 pmcid: 3338343 doi: 10.1016/j.jmoldx.2011.08.002
Lauter, G., Soll, I. & Hauptmann, G. Sensitive multiplexed fluorescent in situ hybridization using enhanced tyramide signal amplification and its combination with immunofluorescent protein visualization in zebrafish. Methods Mol. Biol. 2047, 397–409 (2020).
pubmed: 31552667 doi: 10.1007/978-1-4939-9732-9_22
Gross-Thebing, T., Paksa, A. & Raz, E. Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biol. 12, 55 (2014).
pubmed: 25124741 pmcid: 4172952 doi: 10.1186/s12915-014-0055-7
He, J. et al. Mammalian target of rapamycin complex 1 signaling is required for the dedifferentiation from biliary cell to bipotential progenitor cell in zebrafish liver regeneration. Hepatology 70, 2092–2106 (2019).
pubmed: 31136010 doi: 10.1002/hep.30790
He, J., Lu, H., Zou, Q. & Luo, L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800 e788 (2014).
pubmed: 24315993 doi: 10.1053/j.gastro.2013.11.045
Chen, J. et al. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev. Cell 49, 697–710 (2019).
pubmed: 31006646 doi: 10.1016/j.devcel.2019.03.022
Julich, D. et al. beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev. Biol. 286, 391–404 (2005).
pubmed: 16125692 doi: 10.1016/j.ydbio.2005.06.040
Brend, T. & Holley, S.A. Zebrafish whole mount high-resolution double fluorescent in situ hybridization. J. Vis. Exp. 25, e1229 (2009).
Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).
pubmed: 18193022 doi: 10.1038/nprot.2007.514
Furthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development 128, 2175–2186 (2001).
pubmed: 11493538
Furthauer, M., Lin, W., Ang, S. L., Thisse, B. & Thisse, C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat. Cell Biol. 4, 170–174 (2002).
pubmed: 11802165 doi: 10.1038/ncb750
Tsang, M., Friesel, R., Kudoh, T. & Dawid, I. B. Identification of Sef, a novel modulator of FGF signalling. Nat. Cell Biol. 4, 165–169 (2002).
pubmed: 11802164 doi: 10.1038/ncb749
Kikuchi, Y. et al. casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15, 1493–1505 (2001).
pubmed: 11410530 pmcid: 312713 doi: 10.1101/gad.892301
Donovan, A. et al. The zebrafish mutant gene chardonnay (cdy) encodes divalent metal transporter 1 (DMT1). Blood 100, 4655–4659 (2002).
pubmed: 12393445 doi: 10.1182/blood-2002-04-1169
Lauter, G., Soll, I. & Hauptmann, G. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11, 43 (2011).
pubmed: 21726453 pmcid: 3141750 doi: 10.1186/1471-213X-11-43
Cao, Z., Mao, X. & Luo, L. Germline stem cells drive ovary regeneration in zebrafish. Cell Rep. 26, 1709–1717 e1703 (2019).
pubmed: 30759383 doi: 10.1016/j.celrep.2019.01.061
Cha, Y. R. & Weinstein, B. M. Use of PCR template-derived probes prevents off-target whole mount in situ hybridization in transgenic zebrafish. Zebrafish 9, 85–89 (2012).
pubmed: 22715949 pmcid: 3388497 doi: 10.1089/zeb.2011.0731
Field, H. A., Ober, E. A., Roeser, T. & Stainier, D. Y. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 279–290 (2003).
pubmed: 12645931 doi: 10.1016/S0012-1606(02)00017-9
Cooper, M. S. et al. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Dev. Dyn. 232, 359–368 (2005).
pubmed: 15614774 doi: 10.1002/dvdy.20252
Godinho, L. et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 132, 5069–5079 (2005).
pubmed: 16258076 doi: 10.1242/dev.02075
Her, G. M., Chiang, C. C., Chen, W. Y. & Wu, J. L. In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett. 538, 125–133 (2003).
pubmed: 12633865 doi: 10.1016/S0014-5793(03)00157-1

Auteurs

Jianbo He (J)

Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.

Dashuang Mo (D)

Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.

Jingying Chen (J)

Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.

Lingfei Luo (L)

Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China. lluo@swu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH