Mechanistic Effect Modeling of Earthworms in the Context of Pesticide Risk Assessment: Synthesis of the FORESEE Workshop.
Cross-species extrapolation
Plant protection products
Population modeling
Soil organisms
Uptake routes
Journal
Integrated environmental assessment and management
ISSN: 1551-3793
Titre abrégé: Integr Environ Assess Manag
Pays: United States
ID NLM: 101234521
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
25
06
2020
revised:
10
07
2020
accepted:
08
09
2020
pubmed:
11
9
2020
medline:
16
2
2021
entrez:
10
9
2020
Statut:
ppublish
Résumé
Earthworms are important ecosystem engineers, and assessment of the risk of plant protection products toward them is part of the European environmental risk assessment (ERA). In the current ERA scheme, exposure and effects are represented simplistically and are not well integrated, resulting in uncertainty when the results are applied to ecosystems. Modeling offers a powerful tool to integrate the effects observed in lower tier laboratory studies with the environmental conditions under which exposure is expected in the field. This paper provides a summary of the (In)Field Organism Risk modEling by coupling Soil Exposure and Effect (FORESEE) Workshop held 28-30 January 2020 in Düsseldorf, Germany. This workshop focused on toxicokinetic-toxicodynamic (TKTD) and population modeling of earthworms in the context of ERA. The goal was to bring together scientists from different stakeholder groups to discuss the current state of soil invertebrate modeling and to explore how earthworm modeling could be applied to risk assessments, in particular how the different model outputs can be used in the tiered ERA approach. In support of these goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder groups to support further model development. The modeling approach included 4 submodules to cover the most relevant processes for earthworm risk assessment: environment, behavior (feeding, vertical movement), TKTD, and population. Four workgroups examined different aspects of the model with relevance for risk assessment, earthworm ecology, uptake routes, and cross-species extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight how the collaborative effort of participants from multidisciplinary backgrounds helped to establish common ground. In addition, we provide a list of recommendations for how earthworm TKTD modeling could address some of the uncertainties in current risk assessments for plant protection products. Integr Environ Assess Manag 2021;17:352-363. © 2020 SETAC.
Substances chimiques
Pesticides
0
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
352-363Subventions
Organisme : European Crop Protection Association (ECPA)
Informations de copyright
© 2020 SETAC.
Références
Agatz A, Brown CD. 2017. Introducing the 2-DROPS model for two-dimensional simulation of crop roots and pesticide within the soil-root zone. Sci Total Environ 586:966-975.
Ashauer R, Albert C, Augustine S, Cedergreen N, Charles S, Ducrot V, Focks A, Gabsi F, Gergs A, Goussen B et al. 2016. Modelling survival: Exposure pattern, species sensitivity and uncertainty. Sci Rep 6:29178. https://doi.org/10.1038/srep29178
Ashauer R, Escher BI. 2010. Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. J Environ Monit 12:2056-2061.
Ashauer R, Jager T. 2018. Physiological modes of action across species and toxicants: The key to predictive ecotoxicology. Environ Sci Process Impacts 20:48-57.
Ashauer R, Thorbek P, Warinton JS, Wheeler JR, Maund S. 2013. A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data. Environ Toxicol Chem 23:954-965.
Bart S, Amossé J, Lowe CN, Mougin C, Pery ARR, Pelosi C. 2018. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: Current knowledge and recommendations for culture and experimental design. Environ Sci Pollut Res 25:33867-33881.
Bastardie F, Capowiez Y, Renault P, Cluzeau D. 2005. A radio-labelled study of earthworm behaviour in artificial soil cores in term of ecological types. Biol Fertil Soils 41(5):320-327. https://doi.org/10.1007/s00374-005-0847-6
Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE et al. 2013. A review of earthworm impact on soil function and ecosystem services: Earthworm impact on ecosystem services. Eur J Soil Sci 64(2):161-182. https://doi.org/10.1111/ejss.12025
Bottinelli N, Bouquet P, Hedde M, Capowiez Y. 2020. Explicit definition of earthworm ecological categories-Marcel Bouché's triangle revisited. Geoderma 372:114361. https://doi.org/10.1016/j.geoderma.2020.114361
Bouché MB. 1977. Strategies lombriciennes. Soil Org Common Ecosyst Ecol Bull 25:122-132.
Capowiez Y, Belzunces L. 2001. Dynamic study of the burrowing behavior of Aporrectodea nocturna and Allolobophora chlorotica: Interactions between earthworms and spatial avoidance of burrows. Biol Fertil Soils 33:310-316.
Capowiez Y, Sammartino S, Michel E. 2014. Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia 57:303-309.
DeAngelis DL, Grimm V. 2014. Individual-based models in ecology after four decades. London (UK): Faculty Opinions. F1000Prime Rep 6. 6 p. https://doi.org/10.12703/P6-39
De Lima e Silva C, Brennan N, Brouwer JM, Commandeur D, Verweij RA, van Gestel CAM. 2017. Comparative toxicity of imidacloprid and thiacloprid to different species of soil invertebrates. Ecotoxicology 26:555-564.
[EC] European Commission. 2013a. Commission regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 93/1.
[EC] European Commission. 2013b. Commission regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 93/85.
[EFSA] European Food Safety Authority. 2014. Scientific opinion on good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products. EFSA J 12(3):3589. 92 p. https://doi.org/10.2903/j.efsa.2014.3589
[EFSA] European Food Safety Authority. 2018. Guidance on uncertainty analysis in scientific assessments. EFSA J 16(1):5123. 39 p. https://doi.org/10.2903/j.efsa.2018.5123
[EFSA] European Food Safety Authority. 2019. Guidance on communication of uncertainty in scientific assessments. EFSA J 17(1):5520. 73 p. https://doi.org/10.2903/j.efsa.2019.5520
[EFSA PPR] European Food Safety Authority Panel on Plant Protection Products and their Residues. 2017. Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 15(2):4690. 225 p. https://doi.org/10.2903/j.efsa.2017.4690
[EFSA PPR] European Food Safety Authority Panel on Plant Protection Products and their Residues. 2018. Scientific opinion on the state of the art of toxicokinetic/toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA J 16(8):5377. 188 p. https://doi.org/10.2903/j.efsa.2018.5377
Eriksen-Hamel NS, Whalen JK. 2006. Growth rates of Aporrectodea caliginosa (Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns. Pedobiologia 50(3):207-215. https://doi.org/10.1016/j.pedobi.2005.10.008
[EU] European Union. 2011. Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155. 2011 Jun 11. p 127-175.
Ferrière G. 1980. Fonctions des lombriciens. VII. Une méthode d'analyse de la matière organique végétale ingérée [Functions of earthworms. VII. A method of analyzing ingested plant organic matter]. Pedobiologia 20(4):263-273.
FOCUS. 2014. Generic guidance for tier 1 FOCUS groundwater assessments. Version 2.2. https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/gw/doc.html
Forbes VE, Schmolke A, Accolla C, Grimm V. 2019. A plea for consistency, transparency, and reproducibility in risk assessment effect models. Environ Toxicol Chem 38:9-11.
Frazao J, de Goede R, Capowiez Y, Pulleman M. 2019. Soil structure formation and organic matter distribution as affected by earthworm species interaction and crop residue placement. Geoderma 338:453-463.
Gerard BM. 1967. Factors affecting earthworms in pastures. J Anim Ecol 36(1):235-252. https://doi.org/10.2307/3024
Gergs A, Rakel KJ, Liesy D, Zenker A, Classen S. 2019. Mechanistic effect modeling approach for the extrapolation of species sensitivity. Environ Sci Technol 53:9818-9825.
Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DGJ. 2008. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol 42:5807-5813.
Hoeffner K, Santonja M, Cluzeau D, Monard C. 2019. Epi-anecic rather than strict-anecic earthworms enhance soil enzymatic activities. Soil Biol Biochem 132:93-100. https://doi.org/10.1016/j.soilbio.2019.02.001
Holmstrup M. 2001. Sensitivity of life history parameters in the earthworm Aporrectodea caliginosa to small changes in soil water potential. Soil Biol Biochem 33:1217-1223.
Hommen U, Forbes VE, Grimm V, Preuss TG, Thorbek P, Ducrot V. 2016. How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC Workshop MODELINK. Integr Environ Assess Manag 12:21-31.
[ISO] International Organization for Standardization. 2014. Soil quality-Effects of pollutants on earthworms-Part 3: Guidance on the determination of effects in field situations. 2nd ed. Geneva (CH). ISO 11268-3. 13 p.
Jager T. 2019. Making sense of chemical stress. Application of dynamic energy budget theory in ecotoxicology and stress ecology. Version 2.0. Amsterdam (NL): Leanpub. 155 p. https://leanpub.com/debtox_book
Jager T, Albert C, Preuss TG, Ashauer R. 2011. General unified threshold model of survival-A toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529-2540.
Jager T, Ashauer R. 2018. Modelling survival under chemical stress. A comprehensive guide to the GUTS framework. York (UK): Toxicodynamics Ltd. 193 p. https://leanpub.com/guts_book
Jager T, Fleuren RHLJ, Hogendoorn EA, de Korte G. 2003. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37(15):3399-3404. https://doi.org/10.1021/es0340578
Jager T, Heugens EHW, Kooijman SALM. 2006. Making sense of ecotoxicological test results: Towards application of process-based models. Ecotoxicology 15:305-314.
Jégou D, Cluzeau D, Wolf HJ, Gandon Y, Trehen P. 1998. Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi and Aporrectodea caliginosa using X-ray computed tomography. Biol Fertil Soils 26:116-121.
Johnston A, Sibly RM, Hodson ME, Alvarez T, Thorbek P. 2015. Effects of agricultural management practices on earthworm populations and crop yield: Validation and application of a mechanistic modelling approach. J Appl Ecol 52:1334-1342.
Johnston ASA, Hodson ME, Thorbek P, Alvarez T, Sibly RM. 2014. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides. Ecol Model 280:5-17.
Johnston ASA, Holmstrup M, Hodson ME, Thorbek P, Alvarez T, Sibly RM. 2014. Earthworm distribution and abundance predicted by a process-based model. Appl Soil Ecol 84:112-123.
Johnston ASA, Sibly RM, Thorbek P. 2018. Forecasting tillage and soil warming effects on earthworm populations. J Appl Ecol 55:1498-1509.
Klein M. 1991. PELMO: Pesticide LeachingModel. Schmallenberg (DE): Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
Kretzschmar A. 1991. Burrowing ability of the earthworm Aporrectodea longa limited by soil compaction and water potential. Biol Fertil Soils 11(1):48-51. https://doi.org/10.1007/BF00335834
LaLone CA, Ankley GT, Belanger SE, Embry MR, Hodges G, Knapen D, Munn S, Perkins EJ, Rudd MA, Villeneuve DL et al. 2017. Advancing the adverse outcome pathway framework-An international horizon scanning approach. Environ Toxicol Chem 36:1411-1421.
LaLone CA, Villeneuve DL, Lyons D, Helgen HW, Robinson SL, Swintek JA, Saari TW, Ankley GT. 2016. Sequence alignment to predict across species susceptibility (SeqAPASS): A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity. Toxicol Sci 153:228-245.
Le Couteulx A, Wolf C, Hallaire V, Pérès G. 2015. Burrowing and casting activities of three endogeic earthworm species affected by organic matter location. Pedobiologia 58(2-3):97-103. https://doi.org/10.1016/j.pedobi.2015.04.004
Lee KE. 1985. Earthworms: Their ecology and relationships with soils and land use. Cambridge (MA): Academic. 411 p. [accessed 2019 Nov 8]. https://www.cabdirect.org/cabdirect/abstract/19851998411
Leistra M, van der Linden AMA, Boesten JJTI, Tiktak A, van den Berg F. 2001. PEARL model for pesticide behaviour and emissions in soil-plant systems: Description of the processes in FOCUS.
Li J, Carter LJ, Boxall ABA. 2020. Evaluation and development of models for estimating the sorption behaviour of pharmaceuticals in soils. J Hazard Mater 392:122469.
Ma W, Bodt J. 1993. Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta, Lumbricidae) in standardized soil tests. Bull Environ Contam Toxicol 50(6). https://doi.org/10.1007/BF00209951
Nuutinen V, Butt KR, Jauhiainen L, Shipitalo MJ, Sirén T. 2014. Dew-worms in white nights: High-latitude light constrains earthworm (Lumbricus terrestris) behaviour at the soil surface. Soil Biol Biochem 72:66-74. https://doi.org/10.1016/j.soilbio.2014.01.023
[OECD] Organisation for Economic Co-operation and Development. 1984. Test No. 207: Earthworm, acute toxicity tests, OECD guidelines for the testing of chemicals, Section 2. Paris (FR): OECD Publishing. 9 p. https://doi.org/10.1787/9789264070042-en
[OECD] Organisation for Economic Co-operation and Development. 2016. Test No. 222: Earthworm reproduction test (Eisenia fetida/Eisenia andrei). Paris (FR). 29 p. https://doi.org/10.1787/9789264264496-en
Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F. 2014. Pesticides and earthworms. A review. Agron Sustain Dev 34(1):199-228. https://doi.org/10.1007/s13593-013-0151-z
Roeben V, Oberdoerster S, Rakel KJ, Liesy D, Capowiez Y, Ernst G, Preuss TG, Gergs A, Oberdoerster C. 2020. Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity. Sci Total Environ 722:137673. https://doi.org/10.1016/j.scitotenv.2020.137673
Römbke J, Schmelz RM, Pelosi C. 2017. Effects of organic pesticides on enchytraeids (Oligochaeta) in agroecosystems: Laboratory and higher-tier tests. Front Environ Sci 5:20-23.
[SANCO] Santé et Consommateurs (Directorate General Health and Consumers). 2002. SANCO/10329/2002 rev 2 final Guidance document on terrestrial ecotoxicology under Council Directive 91/414/EEC. Brussels (BE): European Commission.
Šimůnek J, Van Genuchten MT, Šejna M. 2012. The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media. Technical manual, Version 2. Prague (CZ). 258 p.
Solomon K, Brock T, De Zwart D, Dyer SD, Posthuma L, Richards S, Sanderson H, Sibley P, van den Brink P, editors. 2008. Extrapolation practice for ecotoxicological effect characterization of chemicals. Boca Raton (FL): CRC. 408 p.
Spurgeon DJ, Weeks JM, Van Gestel CAM. 2003. A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia 47(5-6):588-606. https://doi.org/10.1078/0031-4056-00234
Tomlin AD. 1992. Behavior as a source of earthworm susceptibility to ecotoxicants. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F, editors. Advances in earthworm ecotoxicology. Andover (MA): Intercept. p 116-125.
Topping CJ, Aldrich A, Berny P. 2020. Overhaul environmental risk assessment for pesticides. Science 367:360-363.
Uvarov AV. 2017. Density-dependent responses in some common lumbricid species. Pedobiologia 61:1-8.
Van den Berg F, Tiktak A, Boesten JJTI, Van der Linden AMA. 2016. PEARL model for pesticide behaviour and emissions in soil-plant systems. Wageningen (NL): Statutory Research Tasks Unit for Nature & the Environment. 134 p. WOt-technical report 61. https://edepot.wur.nl/377664
Van den Berg SJP, Maltby L, Sinclair T, Liang R, van den Brink PJ. 2020. Cross-species extrapolation of chemical sensitivity. Sci Total Environ 753:141800. https://doi.org/10.1016/j.scitotenv.2020.141800
Van Gestel CAM, van Dis WA, Dirven-Van Breemen EM, Sparenburg PM, Baerselman R. 1991. Influence of cadmium, copper and pentachlorophenol on growth and sexual development of Eisenia andrei (Oligochaeta: Annelida). Biol Fertil Soil 12:117-121.
Verbruggen B, Gunnarsson L, Kristiansson E, Osterlund T, Owen SF, Snape JR, Tyler CR. 2018. ECOdrug: A database connecting drugs and conservation of their targets across species. Nucl Acids Res 46:D930-D936.