In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry.

IR-MALDI Ion mobility spectrometry Microchip Olefin isomerization Photocatalysis Photochemistry Reaction monitoring

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Nov 2020
Historique:
received: 18 06 2020
accepted: 27 08 2020
revised: 17 08 2020
pubmed: 13 9 2020
medline: 13 9 2020
entrez: 12 9 2020
Statut: ppublish

Résumé

The visible-light photocatalytic E/Z isomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzed E/Z isomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of the Z-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for the E/Z isomerization of ethyl cinnamate derivative E-1. Conversion rates of up to 80% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan.

Identifiants

pubmed: 32918557
doi: 10.1007/s00216-020-02923-y
pii: 10.1007/s00216-020-02923-y
pmc: PMC7550389
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7899-7911

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 275653032

Références

Anal Chem. 2017 Dec 5;89(23):13030-13037
pubmed: 29096060
Science. 2014 Feb 28;343(6174):1239176
pubmed: 24578578
Chem Soc Rev. 2011 Jan;40(1):102-13
pubmed: 20532341
Anal Chem. 2019 Jun 18;91(12):7613-7620
pubmed: 31082255
J Am Chem Soc. 2005 Nov 23;127(46):16054-64
pubmed: 16287292
Anal Bioanal Chem. 2016 Sep;408(23):6259-68
pubmed: 27370689
Anal Chem. 2016 Mar 1;88(5):2856-63
pubmed: 26840982
Chem Rev. 2017 Sep 27;117(18):11796-11893
pubmed: 28570059
J Phys Chem Lett. 2018 May 17;9(10):2647-2651
pubmed: 29724104
Phys Chem Chem Phys. 2007 Jul 14;9(26):3335-60
pubmed: 17664960
Top Curr Chem (Cham). 2018 Nov 19;376(6):45
pubmed: 30450506
Anal Bioanal Chem. 2018 Jan;410(3):853-862
pubmed: 29085988
Lab Chip. 2016 Dec 20;17(1):76-81
pubmed: 27896351
Anal Chem. 2019 May 21;91(10):6689-6694
pubmed: 31034207
Lab Chip. 2016 Nov 29;16(24):4648-4652
pubmed: 27824367
J Org Chem. 2013 Jul 5;78(13):6384-9
pubmed: 23750988
Analyst. 2019 Sep 23;144(19):5882-5889
pubmed: 31497808
J Am Chem Soc. 2015 Sep 9;137(35):11254-7
pubmed: 26310905
Chem Rec. 2014 Jun;14(3):410-8
pubmed: 24890908
Chempluschem. 2017 Feb;82(2):233-240
pubmed: 31961544
Electrophoresis. 2009 Jun;30 Suppl 1:S92-100
pubmed: 19517511
Chempluschem. 2017 Oct;82(10):1266-1273
pubmed: 31957990
Anal Chem. 2016 Aug 2;88(15):7481-6
pubmed: 27397738
Nano Lett. 2007 Feb;7(2):394-7
pubmed: 17298006
Anal Chem. 2017 Jun 6;89(11):6175-6181
pubmed: 28489359
Electrophoresis. 2010 Oct;31(19):3263-7
pubmed: 22216443
Anal Chem. 2017 Dec 19;89(24):13550-13558
pubmed: 29164853
Chem Rev. 2013 Jul 10;113(7):5322-63
pubmed: 23509883
Chem Commun (Camb). 2015 May 25;51(42):8801-4
pubmed: 25916748
Angew Chem Int Ed Engl. 2007;46(26):4913-6
pubmed: 17516595
Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13729-13733
pubmed: 27690263
Angew Chem Int Ed Engl. 2012 Apr 23;51(17):4144-7
pubmed: 22431004
Phys Chem Chem Phys. 2015 Sep 21;17(35):22623-31
pubmed: 26280514
Angew Chem Int Ed Engl. 2019 Oct 1;58(40):14374-14378
pubmed: 31386256
Chem Commun (Camb). 2015 May 21;51(41):8588-91
pubmed: 25603962

Auteurs

Chris Prüfert (C)

University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany. cpruefert@uni-potsdam.de.

Raphael David Urban (RD)

Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.

Tillmann Georg Fischer (TG)

Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.

José Villatoro (J)

University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Daniel Riebe (D)

University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Toralf Beitz (T)

University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Detlev Belder (D)

Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.

Kirsten Zeitler (K)

Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.

Hans-Gerd Löhmannsröben (HG)

University of Potsdam, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany. loeh@chem.uni-potsdam.de.

Classifications MeSH