Designed Ankyrin Repeat Protein (DARPin) to target chimeric antigen receptor (CAR)-redirected T cells towards CD4
Ankyrin Repeat
CD4-Positive T-Lymphocytes
/ drug effects
Dose-Response Relationship, Immunologic
Drug Evaluation, Preclinical
Gammaretrovirus
/ genetics
Genetic Vectors
/ genetics
HEK293 Cells
HIV
/ isolation & purification
HIV Infections
/ immunology
Humans
Immunotherapy, Adoptive
Lymphocyte Activation
Lymphocyte Depletion
/ methods
Peptides
/ chemistry
Single-Chain Antibodies
/ immunology
Transduction, Genetic
CAR T cells
DARPin
HIV reservoir
T cell therapy
Journal
Medical microbiology and immunology
ISSN: 1432-1831
Titre abrégé: Med Microbiol Immunol
Pays: Germany
ID NLM: 0314524
Informations de publication
Date de publication:
Dec 2020
Dec 2020
Historique:
received:
16
09
2019
accepted:
19
08
2020
pubmed:
13
9
2020
medline:
27
10
2020
entrez:
12
9
2020
Statut:
ppublish
Résumé
Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4
Identifiants
pubmed: 32918599
doi: 10.1007/s00430-020-00692-0
pii: 10.1007/s00430-020-00692-0
pmc: PMC7568711
doi:
Substances chimiques
Peptides
0
Single-Chain Antibodies
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
681-691Subventions
Organisme : Deutsches Zentrum für Infektionsforschung
ID : TTU 04.802
Références
Johnson LA, June CH (2017) Driving gene-engineered T cell immunotherapy of cancer. Cell Res 27(1):38–58. https://doi.org/10.1038/cr.2016.154
doi: 10.1038/cr.2016.154
pubmed: 28025979
Holzinger A, Barden M, Abken H (2016) The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother 65(12):1433–1450. https://doi.org/10.1007/s00262-016-1895-5
doi: 10.1007/s00262-016-1895-5
pubmed: 27613725
Roberts MR, Qin L, Zhang D et al (1994) Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84(9):2878–2889
doi: 10.1182/blood.V84.9.2878.2878
Muhammad N, Mao Q, Xia H (2017) CAR T-cells for cancer therapy. Biotechnol Genet Eng Rev 33(2):190–226. https://doi.org/10.1080/02648725.2018.1430465
doi: 10.1080/02648725.2018.1430465
pubmed: 29431047
Sadowski I, Hashemi FB (2019) Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 76(18):3583–3600. https://doi.org/10.1007/s00018-019-03156-8
doi: 10.1007/s00018-019-03156-8
pubmed: 31129856
pmcid: 6697715
Bour S, Schubert U, Strebel K (1995) The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: Implications for the mechanism of degradation. J Virol 69(3):1510–1520
doi: 10.1128/JVI.69.3.1510-1520.1995
Ramos CA, Savoldo B, Dotti G (2014) CD19-CAR Trials. The Cancer J 20(2):112–118. https://doi.org/10.1097/PPO.0000000000000031
doi: 10.1097/PPO.0000000000000031
pubmed: 24667955
Tamaskovic R, Simon M, Stefan N et al (2012) Designed Ankyrin Repeat Proteins (DARPins). In: Dane Wittrup K, Verdine GL (eds) Protein engineering for therapeutics, Part B, vol 503. Elsevier, pp 101–134
Wetzel SK, Settanni G, Kenig M et al (2008) Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J Mol Biol 376(1):241–257. https://doi.org/10.1016/j.jmb.2007.11.046
doi: 10.1016/j.jmb.2007.11.046
pubmed: 18164721
Ewert S, Huber T, Honegger A et al (2003) Biophysical properties of human antibody variable domains. J Mol Biol 325(3):531–553. https://doi.org/10.1016/S0022-2836(02)01237-8
doi: 10.1016/S0022-2836(02)01237-8
pubmed: 12498801
Schweizer A, Rusert P, Berlinger L et al (2008) CD4-specific designed ankyrin repeat proteins are novel potent hiv entry inhibitors with unique characteristics. PLoS Pathog 4(7):e1000109. https://doi.org/10.1371/journal.ppat.1000109
doi: 10.1371/journal.ppat.1000109
pubmed: 18654624
pmcid: 2453315
Willemsen RA, Debets R, Chames P et al (2003) Genetic engineering of T cell specificity for immunotherapy of cancer. Hum Immunol 64(1):56–68. https://doi.org/10.1016/S0198-8859(02)00730-9
doi: 10.1016/S0198-8859(02)00730-9
pubmed: 12507815
Hombach A, Heuser C, Sircar R et al (1998) An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin's lymphoma cells in the presence of soluble CD30. Cancer Res 58(6):1116–1119
pubmed: 9515791
Golumba-Nagy V, Kuehle J, Abken H (2017) Genetic modification of T cells with chimeric antigen receptors: a laboratory manual. Human Gene Therapy Methods 28(6):302–309. https://doi.org/10.1089/hgtb.2017.083
doi: 10.1089/hgtb.2017.083
pubmed: 28741380
Mühlebach MD, Schmitt I, Steidl S et al (2003) Transduction efficiency of MLV but not of HIV-1 vectors is pseudotype dependent on human primary T lymphocytes. J Mol Med 81(12):801–810. https://doi.org/10.1007/s00109-003-0491-2
doi: 10.1007/s00109-003-0491-2
pubmed: 14576928
Jordan A (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. The EMBO J 22(8):1868–1877. https://doi.org/10.1093/emboj/cdg188
doi: 10.1093/emboj/cdg188
pubmed: 12682019
Lam S, Bollard C (2013) T-cell therapies for HIV. Immunotherapy 5(4):407–414. https://doi.org/10.2217/imt.13.23
doi: 10.2217/imt.13.23
pubmed: 23557423
pmcid: 3697835
Yang H, Wallace Z, Dorrell L (2018) Therapeutic targeting of HIV reservoirs: how to give T cells a new direction. Front Immunol 9:1295. https://doi.org/10.3389/fimmu.2018.02861
doi: 10.3389/fimmu.2018.02861
Liu L, Patel B, Ghanem MH et al (2015) Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J Virol 89(13):6685–6694. https://doi.org/10.1128/JVI.00474-15
doi: 10.1128/JVI.00474-15
pubmed: 25878112
pmcid: 4468509
Chan DC, Kim PS (1998) HIV Entry and Its Inhibition. Cell 93(5):681–684. https://doi.org/10.1016/S0092-8674(00)81430-0
doi: 10.1016/S0092-8674(00)81430-0
pubmed: 9630213
Plückthun A (2015) Designed Ankyrin Repeat Proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 55(1):489–511. https://doi.org/10.1146/annurev-pharmtox-010611-134654
doi: 10.1146/annurev-pharmtox-010611-134654
pubmed: 25562645
Hammill JA, VanSeggelen H, Helsen CW et al (2015) Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors. J Immunother Cancer 3(1):e28344. https://doi.org/10.1186/s40425-015-0099-4
doi: 10.1186/s40425-015-0099-4
Moot R, Raikar SS, Fleischer L et al (2016) Genetic engineering of chimeric antigen receptors using lamprey derived variable lymphocyte receptors. Mol Ther Oncolytics 3:16026. https://doi.org/10.1038/mto.2016.26
doi: 10.1038/mto.2016.26
pubmed: 27933313
pmcid: 5142425
Zhou Q, Uhlig KM, Muth A et al (2015) Exclusive transduction of human CD4 + T cells upon systemic delivery of CD4-targeted lentiviral vectors. J Immunol 195(5):2493–2501. https://doi.org/10.4049/jimmunol.1500956
doi: 10.4049/jimmunol.1500956
pubmed: 26232436
Kochenderfer JN, Somerville RP, Lu T et al (2017) Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther 25(10):2245–2253. https://doi.org/10.1016/j.ymthe.2017.07.004
doi: 10.1016/j.ymthe.2017.07.004
pubmed: 28803861
pmcid: 5628864
Fischer A (2000) Severe combined immunodeficiencies (SCID). Clin Exp Immunol 122(2):143–149. https://doi.org/10.1046/j.1365-2249.2000.01359.x
doi: 10.1046/j.1365-2249.2000.01359.x
pubmed: 11091267
pmcid: 1905779
Jonker M, Slingerland W, Treacy G et al (1993) In vivo treatment with a monoclonal chimeric anti-CD4 antibody results in prolonged depletion of circulating CD4+ cells in chimpanzees. Clin Exp Immunol 93(3):301–307. https://doi.org/10.1111/j.1365-2249.1993.tb08176.x
doi: 10.1111/j.1365-2249.1993.tb08176.x
pubmed: 8103714
pmcid: 1554916
Straathof KC, Pulè MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254. https://doi.org/10.1182/blood-2004-11-4564
doi: 10.1182/blood-2004-11-4564
pubmed: 15728125
pmcid: 1895037
Ciceri F, Bonini C, Stanghellini MTL et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10(5):489–500. https://doi.org/10.1016/S1470-2045(09)70074-9
doi: 10.1016/S1470-2045(09)70074-9
pubmed: 19345145
Hoyos V, Savoldo B, Quintarelli C et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170. https://doi.org/10.1038/leu.2010.75
doi: 10.1038/leu.2010.75
pubmed: 20428207
pmcid: 2888148
Paszkiewicz PJ, Fräßle SP, Srivastava S et al (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clini Invest 126(11):4262–4272. https://doi.org/10.1172/JCI84813
doi: 10.1172/JCI84813
Policicchio BB, Pandrea I, Apetrei C (2016) Animal models for HIV cure research. Front Immunol 7(8):607. https://doi.org/10.3389/fimmu.2016.00012
doi: 10.3389/fimmu.2016.00012
Dudley ME, Wunderlich JR, Yang JC et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. JCO 23(10):2346–2357. https://doi.org/10.1200/JCO.2005.00.240
doi: 10.1200/JCO.2005.00.240
Gorovits B, Koren E (2019) Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs 33(3):275–284. https://doi.org/10.1007/s40259-019-00354-5
doi: 10.1007/s40259-019-00354-5
pubmed: 31069709
Ghanem MH, Bolivar-Wagers S, Dey B et al (2018) Bispecific chimeric antigen receptors targeting the CD4 binding site and high-mannose Glycans of gp120 optimized for anti–human immunodeficiency virus potency and breadth with minimal immunogenicity. Cytotherapy 20(3):407–419. https://doi.org/10.1016/j.jcyt.2017.11.001
doi: 10.1016/j.jcyt.2017.11.001
pubmed: 29306566
Stumpp MT, Binz HK, Amstutz P (2008) DARPins: a new generation of protein therapeutics. Drug Discov Today 13(15–16):695–701. https://doi.org/10.1016/j.drudis.2008.04.013
doi: 10.1016/j.drudis.2008.04.013
pubmed: 18621567
Campochiaro PA, Channa R, Berger BB et al (2013) Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol 155(4):697–704.e2. https://doi.org/10.1016/j.ajo.2012.09.032
doi: 10.1016/j.ajo.2012.09.032
pubmed: 23218689
Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. https://doi.org/10.1038/nm0603-669
doi: 10.1038/nm0603-669
Omri B, Crisanti P, Alliot F et al (1994) CD4 expression in neurons of the central nervous system. Int Immunol 6(3):377–385. https://doi.org/10.1093/intimm/6.3.377
doi: 10.1093/intimm/6.3.377
pubmed: 8186189
Cartellieri M, Feldmann A, Koristka S et al (2016) Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J 6(8):e458–e458. https://doi.org/10.1038/bcj.2016.61
doi: 10.1038/bcj.2016.61
pubmed: 27518241
pmcid: 5022178
Zhang E, Xu H (2017) A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol 10(1):480. https://doi.org/10.1186/s13045-016-0379-6
doi: 10.1186/s13045-016-0379-6
Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910. https://doi.org/10.1056/NEJMoa1300662
doi: 10.1056/NEJMoa1300662
pubmed: 24597865
pmcid: 4084652
Bruel T, Schwartz O (2018) Markers of the HIV-1 reservoir. Curr Opin HIV AIDS 13(5):383–388. https://doi.org/10.1097/COH.0000000000000482
doi: 10.1097/COH.0000000000000482
pubmed: 29846244