Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease.
HCC
NAFLD
NASH
cholesterol
fructose
Journal
American journal of physiology. Endocrinology and metabolism
ISSN: 1522-1555
Titre abrégé: Am J Physiol Endocrinol Metab
Pays: United States
ID NLM: 100901226
Informations de publication
Date de publication:
01 11 2020
01 11 2020
Historique:
pubmed:
15
9
2020
medline:
29
12
2020
entrez:
14
9
2020
Statut:
ppublish
Résumé
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic linked to metabolic disease. The first stage of NAFLD is characterized by lipid accumulation in hepatocytes, but this can progress into nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Western diets, high in fats, sugars, and cholesterol, are linked to NAFLD development. Murine models are often used to study NAFLD; however, there remains debate on which diet-induced model best mimics both human disease progression and pathogenesis. In this study, we performed a side-by-side comparison of two popular diet models of murine NAFLD/NASH and associated HCC, a high-fat diet supplemented with 30% fructose water (HFHF) and a Western diet high in cholesterol (WDHC), and these were compared with a common grain-based chow diet (GBD). Mice on both experimental diets developed liver steatosis, and WDHC-fed mice had greater levels of hepatic inflammation and fibrosis than HFHF-fed mice. In contrast, HFHF-fed mice were more obese and developed more severe metabolic syndrome, with less pronounced liver disease. Despite these differences, WDHC-fed and HFHF-fed mice had similar tumor burdens in a model of diet-potentiated liver cancer. Response to diet and resulting phenotypes were generally similar between sexes, albeit delayed in females. This study shows that modest differences in diet can significantly uncouple glucose homeostasis and liver damage. In conclusion, long-term feeding of either HFHF or WDHC is a reliable method to induce NASH and diet-potentiated liver cancer in mice of both sexes; however, the choice of diet involves a trade-off between severity of metabolic syndrome and liver damage.
Identifiants
pubmed: 32924526
doi: 10.1152/ajpendo.00321.2020
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM