Latitudinal variation in climate-associated genes imperils range edge populations.

adaptive resilience aquatic biodiversity climate change freshwater fish landscape genomics rainbowfish

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
11 2020
Historique:
received: 21 04 2020
revised: 18 08 2020
accepted: 24 08 2020
pubmed: 16 9 2020
medline: 28 5 2021
entrez: 15 9 2020
Statut: ppublish

Résumé

The ecological impacts of increasing global temperatures are evident in most ecosystems on Earth, but our understanding of how climatic variation influences natural selection and adaptive resilience across latitudes remains largely unknown. Latitudinal gradients allow testing general ecosystem-level theories relevant to climatic adaptation. We assessed differences in adaptive diversity of populations along a latitudinal region spanning highly variable temperate to subtropical climates. We generated and integrated information from environmental mapping, phenotypic variation and genome-wide data from across the geographical range of the rainbowfish Melanotaenia duboulayi, an emerging aquatic system for studies of climate change. We detected, after controlling for spatial population structure, strong interactions between genotypes and environment associated with variation in stream flow and temperature. Some of these hydroclimate-associated genes were found to interact within functional protein networks that contain genes of adaptive significance for projected future climates in rainbowfish. Hydroclimatic selection was also associated with variation in phenotypic traits, including traits known to affect fitness of rainbowfish exposed to different flow environments. Consistent with predictions from the "climatic variability hypothesis," populations exposed to extremes of important environmental variables showed stronger adaptive divergence and less variation in climate-associated genes compared to populations at the centre of the environmental gradient. Our findings suggest that populations that evolved at environmental range margins and at geographical range edges may be more vulnerable to changing climates, a finding with implications for predicting adaptive resilience and managing biodiversity under climate change.

Identifiants

pubmed: 32930432
doi: 10.1111/mec.15637
doi:

Banques de données

Dryad
['10.5061/dryad.73n5tb2v2']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4337-4349

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Adams, R. I., & Hadly, E. A. (2013). Genetic diversity within vertebrate species is greater at lower latitudes. Evolutionary Ecology, 27, 133-143. https://doi.org/10.1007/s10682-012-9587-x
Antao, T., Lopes, A., Lopes, R. J., Beja-Pereira, A., & Luikart, G. (2008). LOSITAN: A workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinformatics, 9, 323.
Attard, C. R., Brauer, C. J., Sandoval-Castillo, J., Faulks, L. K., Unmack, P. J., Gilligan, D. M., & Beheregaray, L. B. (2018). Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): Implications for management and resilience to climate change. Molecular Ecology, 27, 196-215.
Bay, R. A., Harrigan, R. J., Le Underwood, V., Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359, 83-86. https://doi.org/10.1126/science.aan4380
Benestan, L., Quinn, B. K., Maaroufi, H., Laporte, M., Clark, F. K., Greenwood, S. J., Rochette, R., & Bernatchez, L. (2016). Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Molecular Ecology, 25, 5073-5092.
Bergland, A. O., Behrman, E. L., O'Brien, K. R., Schmidt, P. S., & Petrov, D. A. (2014). Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genetics, 10, e1004775. https://doi.org/10.1371/journal.pgen.1004775
Bernatchez, L. (2016). On the maintenance of genetic variation and adaptation to environmental change: Considerations from population genomics in fishes. Journal of Fish Biology, 89, 2519-2556. https://doi.org/10.1111/jfb.13145
Bond, N., Thomson, J., Reich, P., & Stein, J. (2011). Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research, 62, 1043-1061. https://doi.org/10.1071/MF10286
Bragg, J. G., Supple, M. A., Andrew, R. L., & Borevitz, J. O. (2015). Genomic variation across landscapes: Insights and applications. New Phytologist, 207, 953-967. https://doi.org/10.1111/nph.13410
Brauer, C. J., Hammer, M. P., & Beheregaray, L. B. (2016). Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Molecular Ecology, 25, 5093-5113. https://doi.org/10.1111/mec.13830
Brauer, C. J., Unmack, P. J., Smith, S., Bernatchez, L., & Beheregaray, L. B. (2018). On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Molecular Ecology, 27, 3484-3497. https://doi.org/10.1111/mec.14808
Bridle, J. R., Polechová, J., Kawata, M., & Butlin, R. K. (2010). Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecology Letters, 13, 485-494. https://doi.org/10.1111/j.1461-0248.2010.01442.x
Burkhead, N. M. (2012). Extinction rates in North American freshwater fishes, 1900-2010. BioScience, 62, 798-808. https://doi.org/10.1525/bio.2012.62.9.5
Carpenter, S. R., Fisher, S. G., Grimm, N. B., & Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecology and Systematics, 23, 119-139. https://doi.org/10.1146/annurev.es.23.110192.001003
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1, 171-182.
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22, 3124-3140. https://doi.org/10.1111/mec.12354
Chevin, L.-M., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biology, 8, e1000357. https://doi.org/10.1371/journal.pbio.1000357
Crozier, L. G., & Hutchings, J. A. (2014). Plastic and evolutionary responses to climate change in fish. Evolutionary Applications, 7, 68-87. https://doi.org/10.1111/eva.12135
Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guegan, J.-F., Hawkins, B. A., Kaufman, D. M., Kerr, J. T., Oberdorff, T., O'Brien, E., & Turner, J. R. G. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668-6672. https://doi.org/10.1073/pnas.0709472105
Dray, S., Legendre, P., & Blanchet, F. G. (2016). packfor: Forward Selection with permutation. Version R package version 0.0-8/r136. Retrieved from https://R-Forge.R-project.org/projects/sedar/
Dyer, R. J., Nason, J. D., & Garrick, R. C. (2010). Landscape modelling of gene flow: Improved power using conditional genetic distance derived from the topology of population networks. Molecular Ecology, 19, 3746-3759. https://doi.org/10.1111/j.1365-294X.2010.04748.x
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379. https://doi.org/10.1371/journal.pone.0019379
Excoffier, L. G. L., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes - Application to human mitochondrial-DNA restriction data. Genetics, 131, 479-491.
Exposito-Alonso, M., 500 Genomes Field Experiment Team, Burbano, H. A., Bossdorf, O., Nielsen, R., & Weigel, D. (2019). Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 573, 126-129. https://doi.org/10.1038/s41586-019-1520-9
Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 180, 977-993. https://doi.org/10.1534/genetics.108.092221
Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L., & Lasky, J. R. (2015). Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Molecular Ecology, 25, 104-120. https://doi.org/10.1111/mec.13476
Forester, B. R., Lasky, J. R., Wagner, H. H., & Urban, D. L. (2018). Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Molecular Ecology, 27, 2215-2233. https://doi.org/10.1111/mec.14584
Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., Kort, H., Schrijver, A., Diekmann, M., Eriksson, O., Gruwez, R., Hermy, M., Lenoir, J., Plue, J., Coomes, D. A., Verheyen, K., & Gilliam, F. (2013). Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology, 101, 784-795. https://doi.org/10.1111/1365-2745.12074
Frichot, E., Schoville, S. D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30, 1687-1699. https://doi.org/10.1093/molbev/mst063
Galpern, P., Peres-Neto, P. R., Polfus, J., & Manseau, M. (2014). MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol Evol, 5, 1116-1120. https://doi.og/10.1111/2041-210X.12240
GeoscienceAustralia (2011). National surface water information. Australia G (Ed.). http://www.ga.gov.au/topographic-mapping/national-surface-water-information.html
Goudet, J. (2005). Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
Grummer, J. A., Beheregaray, L. B., Bernatchez, L., Hand, B., Luikart, G., Narum, S. R., & Taylor, E. B. (2019). Aquatic landscape genomics and environmental effects on genetic variation. Trends in Ecology and Evolution, 34, 641-654. https://doi.org/10.1016/j.tree.2019.02.013
Guillot, G., Vitalis, R., le Rouzic, A., & Gautier, M. (2014). Detecting correlation between allele frequencies and environmental variables as a signature of selection. A fast computational approach for genome-wide studies. Spatial Statistics, 8, 145-155. https://doi.org/10.1016/j.spasta.2013.08.001
Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guegan, J., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., Porter, E. E., & Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
Hill, J. K., Griffiths, H. M., & Thomas, C. D. (2011). Climate change and evolutionary adaptations at species' range margins. Annual Review of Entomology, 56, 143-159. https://doi.org/10.1146/annurev-ento-120709-144746
Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479. https://doi.org/10.1038/nature09670
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44.
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233-249. https://doi.org/10.1086/282487
Jha, A. R., Miles, C. M., Lippert, N. R., Brown, C. D., White, K. P., & Kreitman, M. (2015). Whole-genome resequencing of experimental populations reveals polygenic basis of egg-size variation in Drosophila melanogaster. Molecular Biology and Evolution, 32, 2616-2632.
Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353-357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
Leder, E. H., McCairns, R. J. S., Leinonen, T., Cano, J. M., Viitaniemi, H. M., Nikinmaa, M., Primmer, C. R., & Merilä, J. (2015). The evolution and adaptive potential of transcriptional variation in sticklebacks - Signatures of selection and widespread heritability. Molecular Biology and Evolution, 32, 674-689.
Legendre, P., & Legendre, L. (1998). Numerical ecology. Second English edition, Amsterdam: . Elsevier.
Lotterhos, K. E., & Whitlock, M. C. (2015). The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Molecular Ecology, 24, 1031-1046. https://doi.org/10.1111/mec.13100
Manel, S., Andrello, M., Henry, K., Verdelet, D., Darracq, A., Guerin, P.-E., Desprez, B., & Devaux, P. (2018). Predicting genotype environmental range from genome-environment associations. Molecular Ecology, 27, 2823-2833. https://doi.org/10.1111/mec.14723
McCairns, R. J. S., Smith, S., Sasaki, M., Bernatchez, L., & Beheregaray, L. B. (2016). The adaptive potential of subtropical rainbowfish in the face of climate change: Heritability and heritable plasticity for the expression of candidate genes. Evolutionary Applications, 9, 531-545.
McGuigan, K., Chenoweth, S. F., & Blows, M. W. (2005). Phenotypic divergence along lines of genetic variance. The American Naturalist, 165, 32-43. https://doi.org/10.1086/426600
McGuigan, K., Franklin, C. E., Moritz, C., & Blows, M. W. (2003). Adaptation of rainbow fish to lake and stream habitats. Evolution, 57, 104-118. https://doi.org/10.1111/j.0014-3820.2003.tb00219.x
Meirmans, P. G., & Van Tienderen, P. H. (2004). GenoType and GenoDive: Two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792-794. https://doi.org/10.1111/j.1471-8286.2004.00770.x
Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M., & Marshall, D. J. (2013). Predicting evolutionary responses to climate change in the sea. Ecology Letters, 16, 1488-1500. https://doi.org/10.1111/ele.12185
Narum, S. R., & Hess, J. E. (2011). Comparison of FST outlier tests for SNP loci under selection. Molecular Ecology Resources, 11, 184-194.
Neyt, C., Jagla, K., Thisse, C., Thisse, B., Haines, L., & Currie, P. (2000). Evolutionary origins of vertebrate appendicular muscle. Nature, 408, 82. https://doi.org/10.1038/35040549
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2015). Package ‘vegan’. Community ecology package, version, 2.3-0.
Oldfather, M. F., Kling, M. M., Sheth, S. N., Emery, N. C., & Ackerly, D. D. (2020). Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. Global Change Biology, 26, 1055-1067. https://doi.org/10.1111/gcb.14897
Patel, R. K., & Jain, M. (2012). NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One, 7, e30619. https://doi.org/10.1371/journal.pone.0030619
Peñuelas, J., Sardans, J., Estiarte, M., Ogaya, R., Carnicer, J., Coll, M., Barbeta, A., Rivas-Ubach, A., Llusià, J., Garbulsky, M., Filella, I., & Jump, A. S. (2013). Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology, 19, 2303-2338. https://doi.org/10.1111/gcb.12143
Peres-Neto, P. R., & Galpern, P. (2019). Memgene: Spatial pattern detection in genetic distance data using Moran's Eigenvector maps (version R package version 1.0.1). Retrieved from https://CRAN.R-project.org/package=memgene
Perreault-Payette, A., Muir, A. M., Goetz, F., Perrier, C., Normandeau, E., Sirois, P., & Bernatchez, L. (2017). Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Molecular Ecology, 26, 1477-1497. https://doi.org/10.1111/mec.14018
Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J.-L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253. https://doi.org/10.1371/journal.pone.0032253
Polechová, J., & Barton, N. H. (2015). Limits to adaptation along environmental gradients. Proceedings of the National Academy of Sciences of the United States of America, 112, 6401-6406. https://doi.org/10.1073/pnas.1421515112
Pritchard, J. K., & Di Rienzo, A. (2010). Adaptation-not by sweeps alone. Nature Reviews Genetics, 11, 665. https://doi.org/10.1038/nrg2880
R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197, 573-589. https://doi.org/10.1534/genetics.114.164350
Razgour, O., Forester, B. R., Taggart, J. B., Bekaert, M., Juste, J., Ibáñez, C., Puechmaille, S. J., Novella-Fernandez, R., Alberdi, A., & Manel, S. (2019). Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences of the United States of America, 116, 10418-10423. https://doi.org/10.1073/pnas.1820663116
Rohlf, F. J. (2003). tpsPLS, partial least-squares. State University of New York at Stony Brook.
Rohlf, F. J. (2015). The tps series of software. Hystrix, 26, 9-12.
Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39, 40-59.
Roy, A. H., Freeman, M. C., Freeman, B. J., Wenger, S. J., Ensign, W. E., & Meyer, J. L. (2005). Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. Journal of the North American Benthological Society, 24, 656-678. https://doi.org/10.1899/04-022.1
Sandoval-Castillo, J., Gates, K., Brauer, C., Smith, S., Bernatchez, L., & Beheregaray, L. B. (2020). Adaptation of plasticity to projected climates and across climatically defined bioregions. Proceedings of the National Academy of Sciences of the United States of America, 117, 17112-17121.
Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H. M., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., & Watson, J. E. M. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671. https://doi.org/10.1126/science.aaf7671
Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., & Manel, S. (2012). Adaptive genetic variation on the landscape: Methods and cases. Annual Review of Ecology, Evolution, and Systematics, 43, 23-43. https://doi.org/10.1146/annurev-ecolsys-110411-160248
Siepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, M. J., & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355, 959-962. https://doi.org/10.1126/science.aag2773
Smith, S., Bernatchez, L., & Beheregaray, L. B. (2013). RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics, 14, 375. https://doi.org/10.1186/1471-2164-14-375
Stein, J., Hutchinson, M., & Stein, J. (2014). A new stream and nested catchment framework for Australia. Hydrology and Earth System Sciences, 18, 1917. https://doi.org/10.5194/hess-18-1917-2014
Sunnucks, P., & Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13, 510-524. https://doi.org/10.1093/oxfordjournals.molbev.a025612
Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296.
Umina, P., Weeks, A., Kearney, M., McKechnie, S., & Hoffmann, A. (2005). A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science, 308, 691-693. https://doi.org/10.1126/science.1109523
Unmack, P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography, 28, 1053-1089. https://doi.org/10.1046/j.1365-2699.2001.00615.x
Unmack, P. J., Allen, G. R., & Johnson, J. B. (2013). Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Molecular Phylogenetics and Evolution, 67, 15-27. https://doi.org/10.1016/j.ympev.2012.12.019
Waldvogel, A. M., Feldmeyer, B., Rolshausen, G., Exposito-Alonso, M., Rellstab, C., Kofler, R., Mock, T., Schmid, K., Schmitt, I., Bataillon, T., Savolainen, O., Bergland, A., Flatt, T., Guillaume, F., & Pfenninger, M. (2020). Evolutionary genomics improves prediction of species responses to climate change. Evolution Letters, 4, 4-18. https://doi.org/10.1002/evl3.154
Wellenreuther, M., & Hansson, B. (2016). Detecting polygenic evolution: Problems, pitfalls, and promises. Trends in Genetics, 32, 155-164. https://doi.org/10.1016/j.tig.2015.12.004
Whitehead, A., & Crawford, D. L. (2006). Neutral and adaptive variation in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 5425-5430. https://doi.org/10.1073/pnas.0507648103
Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology Evolution and Systematics, 34, 273-309.

Auteurs

Steve Smith (S)

Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia.
Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.

Chris J Brauer (CJ)

Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia.

Minami Sasaki (M)

Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia.

Peter J Unmack (PJ)

Centre for Applied Water Science, University of Canberra, Bruce, ACT, Australia.

Gilles Guillot (G)

International Prevention Research Institute, Dardilly, France.

Martin Laporte (M)

Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, Quebec City, QC, Canada.

Louis Bernatchez (L)

Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, Quebec City, QC, Canada.

Luciano B Beheregaray (LB)

Molecular Ecology Lab, Flinders University, Bedford Park, SA, Australia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH