Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 09 2020
Historique:
received: 20 10 2019
accepted: 17 08 2020
entrez: 18 9 2020
pubmed: 19 9 2020
medline: 15 12 2020
Statut: epublish

Résumé

Glioblastoma multiforme involves glioma stem cells (GSCs) that are resistant to various therapeutic approaches. Here, we studied the importance of paracrine signaling in the glioma microenvironment by focusing on the celecoxib-mediated role of chemokines C-C motif ligand 2 (CCL2), C-X-C ligand 10 (CXCL10), and their receptors, CCR2 and CXCR3, in GSCs and a GSC-bearing malignant glioma model. C57BL/6 mice were injected with orthotopic GSCs intracranially and divided into groups administered either 10 or 30 mg/kg celecoxib, or saline to examine the antitumor effects associated with chemokine expression. In GSCs, we analyzed cell viability and expression of chemokines and their receptors in the presence/absence of celecoxib. In the malignant glioma model, celecoxib exhibited antitumor effects in a dose dependent manner and decreased protein and mRNA levels of Ccl2 and CxcL10 and Cxcr3 but not of Ccr2. CCL2 and CXCL10 co-localized with Nestin

Identifiants

pubmed: 32943658
doi: 10.1038/s41598-020-71857-3
pii: 10.1038/s41598-020-71857-3
pmc: PMC7499211
doi:

Substances chimiques

Antineoplastic Agents 0
CCL2 protein, human 0
CCR2 protein, human 0
CXCL10 protein, human 0
CXCR3 protein, human 0
Chemokine CCL2 0
Chemokine CXCL10 0
Receptors, CCR2 0
Receptors, CXCR3 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

15286

Références

Stupp, R. et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2009).
Wei, Z., Kale, S., El Fatimy, R., Rabinovsky, R. & Krichevsky, A. M. Co-cultures of glioma stem cells and primary neurons, astrocytes, microglia, and endothelial cells for investigation of intercellular communication in the brain. Front. Neurosci. 13, 361 (2019).
doi: 10.3389/fnins.2019.00361
Thomas, T. M. & Yu, J. S. Metabolic regulation of glioma stem-like cells in the tumor micro-environment. Cancer Lett. 408, 174–181 (2017).
doi: 10.1016/j.canlet.2017.07.014
Chang, A. L. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76, 5671–5682 (2016).
doi: 10.1158/0008-5472.CAN-16-0144
Huang, B. et al. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 252, 86–92 (2007).
doi: 10.1016/j.canlet.2006.12.012
Honeth, G., Staflin, K., Kalliomaki, S., Lindvall, M. & Kjellman, C. Chemokine-directed migration of tumor-inhibitory neural progenitor cells towards an intracranially growing glioma. Exp. Cell. Res. 312, 1265–1276 (2006).
doi: 10.1016/j.yexcr.2005.12.018
Urra, S. et al. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis? Oncotarget. 9, 2445–2467 (2018).
Maru, S. V. et al. Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J. Neuroimmunol. 199, 35–45 (2008).
doi: 10.1016/j.jneuroim.2008.04.029
Shono, T., Tofilon, P. J., Bruner, J. M., Owolabi, O. & Lang, F. F. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res. 61, 4375–4381 (2001).
pubmed: 11389063
Xu, K., Wang, L. & Shu, H. K. COX-2 overexpression increases malignant potential of human glioma cells through Id1. Oncotarget. 5, 1241–1252 (2014).
doi: 10.18632/oncotarget.1370
Grosch, S., Maier, T. J., Schiffmann, S. & Geisslinger, G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J. Natl. Cancer. Inst. 98, 736–747 (2006).
doi: 10.1093/jnci/djj206
Sato, A. et al. Blocking COX-2 induces apoptosis and inhibits cell proliferation via the Akt/survivin- and Akt/ID3 pathway in low-grade-glioma. J. Neurooncol. 132, 231–238 (2017).
doi: 10.1007/s11060-017-2380-5
Kurtova, A. V. et al. Chan KS Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).
doi: 10.1038/nature14034
Fujita, M. et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71, 2664–2674 (2011).
doi: 10.1158/0008-5472.CAN-10-3055
Zanotto-Filho, A. et al. Inflammatory landscape of human brain tumors reveals an NFkappaB dependent cytokine pathway associated with mesenchymal glioblastoma. Cancer Lett. 390, 176–187 (2017).
doi: 10.1016/j.canlet.2016.12.015
Sampetrean, O. et al. Invasion precedes tumor mass formation in a malignant brain tumor model of genetically modified neural stem cells. Neoplasia. 13, 784–791 (2011).
doi: 10.1593/neo.11624
Zhang, K. et al. WNT/β-Catenin directs self-renewal symmetric cell division of hTERT
doi: 10.1158/0008-5472.CAN-16-1887
Jagadeesh, S. & Banerjee, P. P. Telomerase reverse transcriptase regulates the expression of a key cell cycle regulator, cyclin D1. Biochem. Biophys. Res. Commun. 347, 774–780 (2006).
doi: 10.1016/j.bbrc.2006.06.172
Annovazzi, L. et al. Microglia immunophenotyping in gliomas. Oncol. Lett. 15, 998–1006 (2018).
pubmed: 29399160
Jordan, J. T. et al. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol. Immunother. 57, 123–131 (2008).
doi: 10.1007/s00262-007-0336-x
Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014).
doi: 10.1038/nature13862
Ushio, A. & Eto, K. RBM3 expression is upregulated by NF-κB p65 activity, protecting cells from apoptosis, during mild hypothermia. J. Cell. Biochem. 119, 5734–5749 (2018).
doi: 10.1002/jcb.26757
Jung, Y. et al. MCP-1 and MIP-3α secreted from necrotic cell-treated glioblastoma cells promote migration/infiltration of microglia. Cell Physiol. Biochem. 48, 1332–1346 (2018).
doi: 10.1159/000492092
Takeshima, H., Kuratsu, J., Takeya, M., Yoshimura, T. & Ushio, Y. Expression and localization of messenger RNA and protein for monocyte chemoattractant protein-1 in human malignant glioma. J. Neurosurg. 80, 1056–1062 (1994).
doi: 10.3171/jns.1994.80.6.1056
Xue, N. et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep. 7, 39011. https://doi.org/10.1038/srep39011 (2017).
doi: 10.1038/srep39011 pubmed: 28045028 pmcid: 5206721
Szulzewsky, F. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE 10, e0116644 (2015).
doi: 10.1371/journal.pone.0116644
Teng, K. Y. et al. Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol. Cancer Ther. 16, 312–322 (2017).
doi: 10.1158/1535-7163.MCT-16-0124
Lim, S. Y., Yuzhalin, A. E., Gordon-Weeks, A. N. & Muschel, R. J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 7, 28697–28710 (2016).
doi: 10.18632/oncotarget.7376
Liu, M., Guo, S. & Stiles JK. The emerging role of CXCL10 in cancer (Review). Oncol. Lett. 2, 583–589 (2011).
Xia, J. B. et al. Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine 81, 63–70 (2016).
doi: 10.1016/j.cyto.2016.02.007
Ren, Y., Kan, Y. Z. & Kong, L. F. Study on the effects of target-silencing CXCR3 expression on malignant proliferation of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 26, 508–512 (2018).
pubmed: 30317773
Kern, M. A. et al. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 66, 7059–7066 (2006).
doi: 10.1158/0008-5472.CAN-06-0325
Sareddy, G. R., Kesanakurti, D., Kirti, P. B. & Babu, P. P. Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/beta-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochem. Res. 38, 2313–2322 (2013).
doi: 10.1007/s11064-013-1142-9

Auteurs

Kenji Shono (K)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Izumi Yamaguchi (I)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Yoshifumi Mizobuchi (Y)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan. y.mizobuchi1203@gmail.com.

Hiroshi Kagusa (H)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Akiko Sumi (A)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Toshitaka Fujihara (T)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Kohei Nakajima (K)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Keiko T Kitazato (KT)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Kazuhito Matsuzaki (K)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Hideyuki Saya (H)

Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan.

Yasushi Takagi (Y)

Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH