Nuclear receptors in podocyte biology and glomerular disease.
Journal
Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
accepted:
03
08
2020
pubmed:
19
9
2020
medline:
10
3
2021
entrez:
18
9
2020
Statut:
ppublish
Résumé
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Identifiants
pubmed: 32943753
doi: 10.1038/s41581-020-00339-6
pii: 10.1038/s41581-020-00339-6
doi:
Substances chimiques
Receptors, Cytoplasmic and Nuclear
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
185-204Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK088541
Pays : United States
Références
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).
pubmed: 17139284
Mazaira, G. I. et al. The nuclear receptor field: a historical overview and future challenges. Nucl. Receptor Res. 5, 101320 (2018).
pubmed: 30148160
pmcid: 6108593
Jensen, E. V. On the mechanism of estrogen action. Perspect. Biol. Med. 6, 47–59 (1962).
pubmed: 13957617
Hollenberg, S. M. et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318, 635–641 (1985).
pubmed: 2867473
pmcid: 6165583
Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell 97, 161–163 (1999).
Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat. Rev. Immunol. 6, 44–55 (2006).
pubmed: 16493426
Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).
pubmed: 16143103
pmcid: 1430687
Cain, D. W. & Cidlowski, J. A. Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 29, 545–556 (2015).
pubmed: 26303082
pmcid: 4549805
Zhou, J. & Cidlowski, J. A. The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70, 407–417 (2005).
pubmed: 15862824
Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18, 159–174 (2017).
pubmed: 28053348
pmcid: 6257982
Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).
pubmed: 9183567
Zhao, X., Hwang, D. Y. & Kao, H. Y. The role of glucocorticoid receptors in podocytes and nephrotic syndrome. Nucl. Receptor Res. 5, 101323 (2018).
pubmed: 30417008
pmcid: 6224173
Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).
pubmed: 16236742
Schacke, H., Docke, W. D. & Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96, 23–43 (2002).
pubmed: 12441176
Ponticelli, C. & Locatelli, F. Glucocorticoids in the treatment of glomerular diseases: pitfalls and pearls. Clin. J. Am. Soc. Nephrol. 13, 815–822 (2018).
pubmed: 29475991
pmcid: 5969489
Ito, K., Chung, K. F. & Adcock, I. M. Update on glucocorticoid action and resistance. J. Allergy Clin. Immunol. 117, 522–543 (2006).
pubmed: 16522450
Barnes, P. J. & Adcock, I. M. Glucocorticoid resistance in inflammatory diseases. Lancet 373, 1905–1917 (2009).
pubmed: 19482216
Cavallo, T., Graves, K. & Granholm, N. A. Murine lupus nephritis. Effects of glucocorticoid on circulating and tissue-bound immunoreactants. Lab. Invest. 49, 476–481 (1983).
pubmed: 6604840
Cavallo, T., Graves, K. & Granholm, N. A. Murine lupus nephritis. Effects of glucocorticoid on glomerular permeability. Lab. Invest. 50, 378–384 (1984).
pubmed: 6708452
Holdsworth, S. R. & Bellomo, R. Differential effects of steroids on leukocyte-mediated glomerulonephritis in the rabbit. Kidney Int. 26, 162–169 (1984).
pubmed: 6503135
Ito, M., Aono, Y., Suzuki, A., Nagamatsu, T. & Suzuki, Y. Accelerated passive Heymann nephritis in rats as an experimental model for membranous glomerulonephritis and effects of azathioprine and prednisolone on the nephritis. Jpn. J. Pharmacol. 49, 101–110 (1989).
pubmed: 2724671
Fujiwara, Y. An ultrastructural study of the effect of the steroid in puromycin aminonucleoside nephrosis rats. Virchows Arch. A Pathol. Anat. Histopathol. 405, 11–24 (1984).
pubmed: 6438895
Kawamura, T., Yoshioka, T., Bills, T., Fogo, A. & Ichikawa, I. Glucocorticoid activates glomerular antioxidant enzymes and protects glomeruli from oxidant injuries. Kidney Int. 40, 291–301 (1991).
pubmed: 1942778
Agrawal, S. et al. Pioglitazone enhances the beneficial effects of glucocorticoids in experimental nephrotic syndrome. Sci. Rep. 6, 24392 (2016).
pubmed: 27142691
pmcid: 4855145
Bertani, T. et al. Steroids and Adriamycin nephrosis. Appl. Pathol. 2, 32–38 (1984).
pubmed: 6525317
Pippin, J. W. et al. Inducible rodent models of acquired podocyte diseases. Am. J. Physiol. Ren. Physiol. 296, F213–F229 (2009).
Zhou, H. et al. Loss of the podocyte glucocorticoid receptor exacerbates proteinuria after injury. Sci. Rep. 7, 9833 (2017).
pubmed: 28852159
pmcid: 5575043
Kuppe, C. et al. Investigations of glucocorticoid action in GN. J. Am. Soc. Nephrol. 28, 1408–1420 (2017).
pubmed: 27895155
Ransom, R. F., Lam, N. G., Hallett, M. A., Atkinson, S. J. & Smoyer, W. E. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int. 68, 2473–2483 (2005).
pubmed: 16316324
Wada, T., Pippin, J. W., Marshall, C. B., Griffin, S. V. & Shankland, S. J. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J. Am. Soc. Nephrol. 16, 2615–2625 (2005).
pubmed: 15987750
Ransom, R. F., Vega-Warner, V., Smoyer, W. E. & Klein, J. Differential proteomic analysis of proteins induced by glucocorticoids in cultured murine podocytes. Kidney Int. 67, 1275–1285 (2005).
pubmed: 15780080
Wada, T., Pippin, J. W., Nangaku, M. & Shankland, S. J. Dexamethasone’s prosurvival benefits in podocytes require extracellular signal-regulated kinase phosphorylation. Nephron Exp. Nephrol. 109, e8–e19 (2008).
pubmed: 18480613
Ohashi, T., Uchida, K., Uchida, S., Sasaki, S. & Nitta, K. Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin. Exp. Nephrol. 15, 688–693 (2011).
pubmed: 21695412
Mallipattu, S. K. et al. Kruppel-like factor 15 mediates glucocorticoid-induced restoration of podocyte differentiation markers. J. Am. Soc. Nephrol. 28, 166–184 (2017).
pubmed: 27288011
Lewko, B. et al. Dexamethasone-dependent modulation of cyclic GMP synthesis in podocytes. Mol. Cell Biochem. 409, 243–253 (2015).
pubmed: 26272337
pmcid: 4589550
Xie, H. et al. Inhibition of microRNA-30a prevents puromycin aminonucleoside-induced podocytic apoptosis by upregulating the glucocorticoid receptor alpha. Mol. Med. Rep. 12, 6043–6052 (2015).
pubmed: 26299668
Wu, J. et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 25, 92–104 (2014).
pubmed: 24029422
Guess, A. et al. Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am. J. Physiol. Ren. Physiol. 299, F845–F853 (2010).
Agrawal, S., Guess, A. J., Benndorf, R. & Smoyer, W. E. Comparison of direct action of thiazolidinediones and glucocorticoids on renal podocytes: protection from injury and molecular effects. Mol. Pharmacol. 80, 389–399 (2011).
pubmed: 21636793
pmcid: 3164328
Agrawal, S., Guess, A. J., Chanley, M. A. & Smoyer, W. E. Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int. 86, 1150–1160 (2014).
pubmed: 24918154
pmcid: 4245399
Luetscher, J. A. Jr. & Deming, Q. B. Treatment of nephrosis with cortisone. J. Clin. Invest. 29, 1576–1587 (1950).
pubmed: 14794786
pmcid: 436208
Nourbakhsh, N. & Mak, R. H. Steroid-resistant nephrotic syndrome: past and current perspectives. Pediatric Health Med. Ther. 8, 29–37 (2017).
pubmed: 29388620
pmcid: 5774596
Canetta, P. A. & Radhakrishnan, J. The evidence-based approach to adult-onset idiopathic nephrotic syndrome. Front. Pediatr. 3, 78 (2015).
pubmed: 26442238
pmcid: 4585181
Agrawal, S. et al. Predicting and defining steroid resistance in pediatric nephrotic syndrome using plasma proteomics. Kidney Int. Rep. 5, 66–80 (2020).
pubmed: 31922062
Gooding, J. R. et al. Predicting and defining steroid resistance in pediatric nephrotic syndrome using plasma metabolomics. Kidney Int. Rep. 5, 81–93 (2020).
pubmed: 31922063
Bennett, M. R. et al. A novel biomarker panel to identify steroid resistance in childhood idiopathic nephrotic syndrome. Biomarker Insights 12, 1177271917695832 (2017).
pubmed: 28469399
pmcid: 5391984
Saleem, M. A. Molecular stratification of idiopathic nephrotic syndrome. Nat. Rev. Nephrol. 15, 750–765 (2019).
pubmed: 31654044
Newton, R. & Holden, N. S. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol. Pharmacol. 72, 799–809 (2007).
pubmed: 17622575
Gessi, S., Merighi, S. & Borea, P. A. Glucocorticoid’s pharmacology: past, present and future. Curr. Pharm. Des. 16, 3540–3553 (2010).
pubmed: 20977419
Zhu, Y., Alvares, K., Huang, Q., Rao, M. S. & Reddy, J. K. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J. Biol. Chem. 268, 26817–26820 (1993).
pubmed: 8262913
Chen, F., Law, S. W. & O’Malley, B. W. Identification of two mPPAR related receptors and evidence for the existence of five subfamily members. Biochem. Biophys. Res. Commun. 196, 671–677 (1993).
pubmed: 8240342
Bookout, A. L. et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789–799 (2006).
pubmed: 16923397
pmcid: 6211849
Miglio, G. et al. The subtypes of peroxisome proliferator-activated receptors expressed by human podocytes and their role in decreasing podocyte injury. Br. J. Pharmacol. 162, 111–125 (2011).
pubmed: 20840470
pmcid: 3012410
Mukherjee, R., Jow, L., Croston, G. E. & Paterniti, J. R. Jr Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists. J. Biol. Chem. 272, 8071–8076 (1997).
pubmed: 9065481
Aprile, M. et al. PPARγΔ5, a naturally occurring dominant-negative splice isoform, impairs PPARγ function and adipocyte differentiation. Cell Rep. 25, 1577–1592.e6 (2018).
pubmed: 30404011
Sabatino, L. et al. A novel peroxisome proliferator-activated receptor gamma isoform with dominant negative activity generated by alternative splicing. J. Biol. Chem. 280, 26517–26525 (2005).
pubmed: 15857827
Varanasi, U. et al. Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene. J. Biol. Chem. 271, 2147–2155 (1996).
pubmed: 8567672
Chandra, V. et al. Structure of the intact PPAR-γ-RXR–nuclear receptor complex on DNA. Nature 456, 350–356 (2008).
pubmed: 19043829
pmcid: 2743566
Leo, C. & Chen, J. D. The SRC family of nuclear receptor coactivators. Gene 245, 1–11 (2000).
pubmed: 10713439
Siersbaek, R. et al. Molecular architecture of transcription factor hotspots in early adipogenesis. Cell Rep. 7, 1434–1442 (2014).
pubmed: 24857666
pmcid: 6360525
Dubois-Chevalier, J. et al. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res. 42, 10943–10959 (2014).
pubmed: 25183525
pmcid: 4176165
Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).
Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645–1648 (2002).
pubmed: 11733490
Tomaru, T. et al. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-γ. Endocrinology 147, 377–388 (2006).
pubmed: 16239304
Zhu, Y. et al. Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J. Biol. Chem. 275, 13510–13516 (2000).
pubmed: 10788465
Ricote, M. & Glass, C. K. PPARs and molecular mechanisms of transrepression. Biochim. Biophys. Acta 1771, 926–935 (2007).
pubmed: 17433773
pmcid: 1986735
Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).
pubmed: 20414208
Viswakarma, N. et al. Coactivators in PPAR-regulated gene expression. PPAR Res. 2010, 250126 (2010).
pubmed: 20814439
pmcid: 2929611
Moran-Salvador, E. et al. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 25, 2538–2550 (2011).
pubmed: 21507897
Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).
pubmed: 8001151
Lefterova, M. I., Haakonsson, A. K., Lazar, M. A. & Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 25, 293–302 (2014).
pubmed: 24793638
pmcid: 4104504
Sun, X., Han, R., Wang, Z. & Chen, Y. Regulation of adiponectin receptors in hepatocytes by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Diabetologia 49, 1303–1310 (2006).
pubmed: 16609881
Stewart, W. C., Morrison, R. F., Young, S. L. & Stephens, J. M. Regulation of signal transducers and activators of transcription (STATs) by effectors of adipogenesis: coordinate regulation of STATs 1, 5A, and 5B with peroxisome proliferator-activated receptor-γ and C/AAAT enhancer binding protein-α. Biochim. Biophys. Acta 1452, 188–196 (1999).
pubmed: 10559472
Olsen, H. & Haldosen, L. A. Peroxisome proliferator-activated receptor gamma regulates expression of signal transducer and activator of transcription 5A. Exp. Cell Res. 312, 1371–1380 (2006).
pubmed: 16457814
Prost, S. et al. Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPARγ/STAT5 signaling pathway in macaques. J. Clin. Invest. 118, 1765–1775 (2008).
pubmed: 18431514
pmcid: 2323187
Heikkinen, S., Auwerx, J. & Argmann, C. A. PPARgamma in human and mouse physiology. Biochim. Biophys. Acta 1771, 999–1013 (2007).
pubmed: 17475546
pmcid: 2020525
Sato, K. et al. Expression of peroxisome proliferator-activated receptor isoform proteins in the rat kidney. Hypertens. Res. 27, 417–425 (2004).
pubmed: 15253107
Yang, T. et al. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney. Am. J. Physiol. 277, F966–F973 (1999).
pubmed: 10600944
Henique, C. et al. Nuclear factor erythroid 2-related factor 2 drives podocyte-specific expression of peroxisome proliferator-activated receptor γ essential for resistance to crescentic GN. J. Am. Soc. Nephrol. 27, 172–188 (2016).
pubmed: 25999406
Long, Q. et al. Peroxisome proliferator-activated receptor-γ increases adiponectin secretion via transcriptional repression of endoplasmic reticulum chaperone protein ERp44. Endocrinology 151, 3195–3203 (2010).
pubmed: 20484463
Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466, 451–456 (2010).
pubmed: 20651683
pmcid: 2987584
Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).
pubmed: 23334396
pmcid: 3559480
Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437, 759–763 (2005).
pubmed: 16127449
pmcid: 1464798
Tsukahara, T. et al. Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidic acid. Mol. Cell 39, 421–432 (2010).
pubmed: 20705243
pmcid: 3446787
McIntyre, T. M. et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist. Proc. Natl Acad. Sci. USA 100, 131–136 (2003).
pubmed: 12502787
Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, C. R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 339, 953–959 (1998).
pubmed: 9753710
Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).
pubmed: 10622252
Nikiforova, M. N. et al. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).
pubmed: 12727991
Marques, A. R. et al. Expression of PAX8-PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).
pubmed: 12161538
Rochel, N. et al. Recurrent activating mutations of PPARγ associated with luminal bladder tumors. Nat. Commun. 10, 253 (2019).
pubmed: 30651555
pmcid: 6335423
Halstead, A. M. et al. Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation. eLife 6, e30862 (2017).
pubmed: 29143738
pmcid: 5720590
Toffoli, B. et al. Nephropathy in Pparg-null mice highlights PPARγ systemic activities in metabolism and in the immune system. PLoS ONE 12, e0171474 (2017).
pubmed: 28182703
pmcid: 5300244
Chinetti, G., Fruchart, J. C. & Staels, B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 49, 497–505 (2000).
pubmed: 11089900
Nakamura, T. et al. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism 50, 1193–1196 (2001).
pubmed: 11586492
Sarafidis, P. A., Stafylas, P. C., Georgianos, P. I., Saratzis, A. N. & Lasaridis, A. N. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am. J. Kidney Dis. 55, 835–847 (2010).
pubmed: 20110146
Schneider, C. A. et al. Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 19, 182–187 (2008).
pubmed: 18057215
pmcid: 2391042
Kernan, W. N. et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 374, 1321–1331 (2016).
pubmed: 26886418
pmcid: 4887756
Young, L. H. et al. Cardiac outcomes after ischemic stroke or transient ischemic attack: effects of pioglitazone in patients with insulin resistance without diabetes mellitus. Circulation 135, 1882–1893 (2017).
pubmed: 28246237
pmcid: 5511545
Liu, J. & Wang, L. N. Peroxisome proliferator-activated receptor gamma agonists for preventing recurrent stroke and other vascular events in people with stroke or transient ischaemic attack. Cochrane Database Syst. Rev. 10, CD010693 (2019).
pubmed: 31596946
Zhou, Y. et al. Pioglitazone for the primary and secondary prevention of cardiovascular and renal outcomes in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis. J. Clin. Endocrinol. Metab. 105, dgz252 (2020).
pubmed: 31822895
Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).
pubmed: 17517853
Wallach, J. D. et al. Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses. BMJ 368, l7078 (2020).
pubmed: 32024657
pmcid: 7190063
van Wijk, J. P., de Koning, E. J., Martens, E. P. & Rabelink, T. J. Thiazolidinediones and blood lipids in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 23, 1744–1749 (2003).
pubmed: 12907465
Deeg, M. A. et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care 30, 2458–2464 (2007).
pubmed: 17595355
Mamtani, R. et al. Association between longer therapy with thiazolidinediones and risk of bladder cancer: a cohort study. J. Natl Cancer Inst. 104, 1411–1421 (2012).
pubmed: 22878886
pmcid: 3529598
Graham, D. J. et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304, 411–418 (2010).
pubmed: 20584880
Buckingham, R. E. et al. Peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 47, 1326–1334 (1998).
pubmed: 9703335
Cha, D. R. et al. Peroxisome proliferator activated receptor α/γ dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice. Diabetes 56, 2036–2045 (2007).
pubmed: 17536062
Tanimoto, M. et al. Effect of pioglitazone on the early stage of type 2 diabetic nephropathy in KK/Ta mice. Metabolism 53, 1473–1479 (2004).
pubmed: 15536604
Calkin, A. C. et al. PPAR-α and -γ agonists attenuate diabetic kidney disease in the apolipoprotein E knockout mouse. Nephrol. Dial. Transplant. 21, 2399–2405 (2006).
pubmed: 16720596
Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol. 28, 551–558 (2007).
pubmed: 17981503
Bouhlel, M. A. et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6, 137–143 (2007).
pubmed: 17681149
Chinetti, G. et al. Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J. Biol. Chem. 273, 25573–25580 (1998).
pubmed: 9748221
Ma, L. J., Marcantoni, C., Linton, M. F., Fazio, S. & Fogo, A. B. Peroxisome proliferator-activated receptor-γ agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int. 59, 1899–1910 (2001).
pubmed: 11318962
Yang, H. C. et al. The PPARγ agonist pioglitazone ameliorates aging-related progressive renal injury. J. Am. Soc. Nephrol. 20, 2380–2388 (2009).
pubmed: 19797472
pmcid: 2799181
Yang, H. C., Ma, L. J., Ma, J. & Fogo, A. B. Peroxisome proliferator-activated receptor-gamma agonist is protective in podocyte injury-associated sclerosis. Kidney Int. 69, 1756–1764 (2006).
pubmed: 16598202
Liu, H. F. et al. Thiazolidinedione attenuate proteinuria and glomerulosclerosis in Adriamycin-induced nephropathy rats via slit diaphragm protection. Nephrology 15, 75–83 (2010).
pubmed: 20377774
Zuo, Y. et al. Protective effects of PPARγ agonist in acute nephrotic syndrome. Nephrol. Dial. Transplant. 27, 174–181 (2012).
pubmed: 21565943
Haraguchi, K., Shimura, H. & Onaya, T. Suppression of experimental crescentic glomerulonephritis by peroxisome proliferator-activated receptor (PPAR)γ activators. Clin. Exp. Nephrol. 7, 27–32 (2003).
pubmed: 14586740
Chafin, C. et al. Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. J. Inflamm. Res. 3, 127–134 (2010).
pubmed: 22096362
pmcid: 3218741
Cho, H. Y. et al. Nrf2-regulated PPARγ expression is critical to protection against acute lung injury in mice. Am. J. Respir. Crit. Care Med. 182, 170–182 (2010).
pubmed: 20224069
pmcid: 2913232
Cho, H. Y., Reddy, S. P., Debiase, A., Yamamoto, M. & Kleeberger, S. R. Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic. Biol. Med. 38, 325–343 (2005).
pubmed: 15629862
Huang, J., Tabbi-Anneni, I., Gunda, V. & Wang, L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1211–G1221 (2010).
pubmed: 20930048
pmcid: 3006243
Sonneveld, R. et al. Sildenafil prevents podocyte injury via PPAR-γ-mediated TRPC6 inhibition. J. Am. Soc. Nephrol. 28, 1491–1505 (2017).
pubmed: 27895156
Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).
pubmed: 15879175
Paueksakon, P., Revelo, M. P., Ma, L. J., Marcantoni, C. & Fogo, A. B. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int. 61, 2142–2148 (2002).
pubmed: 12028454
Okada, T. et al. Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependent mechanisms. Diabetes 55, 1666–1677 (2006).
pubmed: 16731829
Kanjanabuch, T. et al. PPAR-γ agonist protects podocytes from injury. Kidney Int. 71, 1232–1239 (2007).
pubmed: 17457378
Miglio, G. et al. Protective effects of peroxisome proliferator-activated receptor agonists on human podocytes: proposed mechanisms of action. Br. J. Pharmacol. 167, 641–653 (2012).
pubmed: 22594945
pmcid: 3449267
Miceli, I. et al. Stretch reduces nephrin expression via an angiotensin II-AT(1)-dependent mechanism in human podocytes: effect of rosiglitazone. Am. J. Physiol. Ren. Physiol. 298, F381–F390 (2010).
Zhu, C. et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARγ. Am. J. Pathol. 178, 2020–2031 (2011).
pubmed: 21514419
pmcid: 3081205
Zhou, Z. et al. MicroRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy. Cell Death Dis. 8, e2658 (2017).
pubmed: 28277542
pmcid: 5386567
Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).
pubmed: 23652116
Burris, T. P. et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65, 710–778 (2013).
pubmed: 23457206
Choi, J. H. et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477, 477–481 (2011).
pubmed: 21892191
pmcid: 3179551
Marciano, D. P. et al. Pharmacological repression of PPARγ promotes osteogenesis. Nat. Commun. 6, 7443 (2015).
pubmed: 26068133
pmcid: 4471882
Allenby, G. et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc. Natl Acad. Sci. USA 90, 30–34 (1993).
pubmed: 8380496
Xu, Q. et al. Retinoids in nephrology: promises and pitfalls. Kidney Int. 66, 2119–2131 (2004).
pubmed: 15569301
Fisher, G. J. et al. Immunological identification and functional quantitation of retinoic acid and retinoid X receptor proteins in human skin. J. Biol. Chem. 269, 20629–20635 (1994).
pubmed: 8051161
Fitzgerald, P., Teng, M., Chandraratna, R. A., Heyman, R. A. & Allegretto, E. A. Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 57, 2642–2650 (1997).
pubmed: 9205071
Jones, K. A. et al. Localization of the retinoid X receptor alpha gene (RXRA) to chromosome 9q34. Ann. Hum. Genet. 57, 195–201 (1993).
pubmed: 8257089
Harrison, E. H. Mechanisms of digestion and absorption of dietary vitamin A. Annu. Rev. Nutr. 25, 87–103 (2005).
pubmed: 16011460
Kawaguchi, R. et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315, 820–825 (2007).
pubmed: 17255476
Liu, L. & Gudas, L. J. Disruption of the lecithin:retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J. Biol. Chem. 280, 40226–40234 (2005).
pubmed: 16174770
Blaner, W. S. et al. Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J. Biol. Chem. 269, 16559–16565 (1994).
pubmed: 8206972
Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell 134, 921–931 (2008).
pubmed: 2632951
pmcid: 2632951
Touma, S. E., Perner, S., Rubin, M. A., Nanus, D. M. & Gudas, L. J. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem. Pharmacol. 78, 1127–1138 (2009).
pubmed: 19549509
pmcid: 2753223
Gronemeyer, H. & Miturski, R. Molecular mechanisms of retinoid action. Cell Mol. Biol. Lett. 6, 3–52 (2001).
pubmed: 11544629
Na, S. Y. et al. Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFκB. J. Biol. Chem. 274, 7674–7680 (1999).
pubmed: 10075655
Benkoussa, M., Brand, C., Delmotte, M. H., Formstecher, P. & Lefebvre, P. Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol. Cell Biol. 22, 4522–4534 (2002).
pubmed: 12052862
pmcid: 133906
Simonson, M. S. Anti-AP-1 activity of all-trans retinoic acid in glomerular mesangial cells. Am. J. Physiol. 267, F805–F815 (1994).
pubmed: 7977784
Wang, R. et al. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J. Biol. Chem. 290, 22532–22542 (2015).
pubmed: 26240147
pmcid: 4566228
Balmer, J. E. & Blomhoff, R. Gene expression regulation by retinoic acid. J. Lipid Res. 43, 1773–1808 (2002).
pubmed: 12401878
Canon, E., Cosgaya, J. M., Scsucova, S. & Aranda, A. Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol. Biol. Cell 15, 5583–5592 (2004).
pubmed: 15371543
pmcid: 532036
Lonze, B. E. & Ginty, D. D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).
pubmed: 12194863
Zhao, Q. et al. Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation. Leukemia 18, 285–292 (2004).
pubmed: 14628075
Parrella, E. et al. Phosphodiesterase IV inhibition by piclamilast potentiates the cytodifferentiating action of retinoids in myeloid leukemia cells. Cross-talk between the cAMP and the retinoic acid signaling pathways. J. Biol. Chem. 279, 42026–42040 (2004).
pubmed: 15292163
Boskovic, G., Desai, D. & Niles, R. M. Regulation of retinoic acid receptor α by protein kinase C in B16 mouse melanoma cells. J. Biol. Chem. 277, 26113–26119 (2002).
pubmed: 12000751
Hughes, P. J., Zhao, Y., Chandraratna, R. A. & Brown, G. Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARα and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. J. Cell. Biochem. 97, 327–350 (2006).
pubmed: 16178010
Evans, T. R. & Kaye, S. B. Retinoids: present role and future potential. Br. J. Cancer 80, 1–8 (1999).
pubmed: 10389969
pmcid: 2362988
Cabezas-Wallscheid, N. et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169, 807–823.e19 (2017).
pubmed: 28479188
Clemens, G. et al. The action of all-trans-retinoic acid (ATRA) and synthetic retinoid analogues (EC19 and EC23) on human pluripotent stem cells differentiation investigated using single cell infrared microspectroscopy. Mol. Biosyst. 9, 677–692 (2013).
pubmed: 23364809
Uray, I. P., Dmitrovsky, E. & Brown, P. H. Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin. Oncol. 43, 49–64 (2016).
pubmed: 26970124
Simoni, D. & Tolomeo, M. Retinoids, apoptosis and cancer. Curr. Pharm. Des. 7, 1823–1837 (2001).
pubmed: 11562311
Kitamura, M. et al. Intervention by retinoic acid in oxidative stress-induced apoptosis. Nephrol. Dial., Transplant. 17 (Suppl 9), 84–87 (2002).
Riahi, R. R., Bush, A. E. & Cohen, P. R. Topical retinoids: therapeutic mechanisms in the treatment of photodamaged skin. Am. J. Clin. Dermatol. 17, 265–276 (2016).
pubmed: 26969582
Beckenbach, L., Baron, J. M., Merk, H. F., Loffler, H. & Amann, P. M. Retinoid treatment of skin diseases. Eur. J. Dermatol. 25, 384–391 (2015).
pubmed: 26069148
Tallman, M. S. All-trans-retinoic acid in acute promyelocytic leukemia and its potential in other hematologic malignancies. Semin. Hematol. 31, 38–48 (1994).
pubmed: 7831584
Brzezinski, P., Borowska, K., Chiriac, A. & Smigielski, J. Adverse effects of isotretinoin: a large, retrospective review. Dermatol. Ther. 30, e12483 (2017).
Lehrke, I. et al. Retinoid receptor-specific agonists alleviate experimental glomerulonephritis. Am. J. Physiol. Ren. Physiol. 282, F741–F751 (2002).
Wagner, J. et al. Retinoic acid reduces glomerular injury in a rat model of glomerular damage. J. Am. Soc. Nephrol. 11, 1479–1487 (2000).
pubmed: 10906161
Moreno-Manzano, V. et al. Retinoids as a potential treatment for experimental puromycin-induced nephrosis. Br. J. Pharmacol. 139, 823–831 (2003).
pubmed: 12813006
pmcid: 1573906
Inagaki, T. et al. The retinoic acid-responsive proline-rich protein is identified in promyeloleukemic HL-60 cells. J. Biol. Chem. 278, 51685–51692 (2003).
pubmed: 14530287
Schaier, M. et al. Isotretinoin alleviates renal damage in rat chronic glomerulonephritis. Kidney Int. 60, 2222–2234 (2001).
pubmed: 11737596
Perez de Lema, G. et al. Retinoic acid treatment protects MRL/lpr lupus mice from the development of glomerular disease. Kidney Int. 66, 1018–1028 (2004).
pubmed: 15327395
Vaughan, M. R. et al. ATRA induces podocyte differentiation and alters nephrin and podocin expression in vitro and in vivo. Kidney Int. 68, 133–144 (2005).
pubmed: 15954902
Morath, C. et al. Effects of retinoids on the TGF-beta system and extracellular matrix in experimental glomerulonephritis. J. Am. Soc. Nephrol. 12, 2300–2309 (2001).
pubmed: 11675406
Dechow, C. et al. Effects of all-trans retinoic acid on renin-angiotensin system in rats with experimental nephritis. Am. J. Physiol. Ren. Physiol. 281, F909–F919 (2001).
Moreno-Manzano, V., Ishikawa, Y., Lucio-Cazana, J. & Kitamura, M. Suppression of apoptosis by all-trans-retinoic acid. Dual intervention in the c-Jun n-terminal kinase-AP-1 pathway. J. Biol. Chem. 274, 20251–20258 (1999).
pubmed: 10400643
Xu, Q., Konta, T. & Kitamura, M. Retinoic acid regulation of mesangial cell apoptosis. Exp. Nephrol. 10, 171–175 (2002).
pubmed: 12053118
Ratnam, K. K. et al. Role of the retinoic acid receptor-α in HIV-associated nephropathy. Kidney Int 79, 624–634 (2011).
pubmed: 21150871
Dai, Y. et al. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int. 92, 1444–1457 (2017).
pubmed: 28756872
pmcid: 5696080
Mallipattu, S. K. & He, J. C. The beneficial role of retinoids in glomerular disease. Front. Med. 2, 16 (2015).
Shankland, S. J., Pippin, J. W., Reiser, J. & Mundel, P. Podocytes in culture: past, present, and future. Kidney Int. 72, 26–36 (2007).
pubmed: 17457377
Lazzeri, E., Peired, A. J., Lasagni, L. & Romagnani, P. Retinoids and glomerular regeneration. Semin. Nephrol. 34, 429–436 (2014).
pubmed: 25217271
He, J. C. et al. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J. Am. Soc. Nephrol. 18, 93–102 (2007).
pubmed: 17182884
Zhang, J. et al. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Exp. Nephrol. 121, e23–e37 (2012).
pubmed: 23107969
pmcid: 3574166
Merlet-Benichou, C., Vilar, J., Lelievre-Pegorier, M. & Gilbert, T. Role of retinoids in renal development: pathophysiological implication. Curr. Opin. Nephrol. Hypertens. 8, 39–43 (1999).
pubmed: 9914859
Gilbert, T. Vitamin A and kidney development. Nephro. Dial. Transplant. 17 (Suppl 9), 78–80 (2002).
Mallipattu, S. K. et al. Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J. Biol. Chem. 287, 19122–19135 (2012).
pubmed: 22493483
pmcid: 3365945
Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).
pubmed: 23949798
pmcid: 3810076
Standeven, A. M., Teng, M. & Chandraratna, R. A. Lack of involvement of retinoic acid receptor α in retinoid-induced skin irritation in hairless mice. Toxicol. Lett. 92, 231–240 (1997).
pubmed: 9334834
Nagpal, S. & Chandraratna, R. A. Recent developments in receptor-selective retinoids. Curr. Pharm. Des. 6, 919–931 (2000).
pubmed: 10828316
Advani, A. et al. Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions. Proc. Natl Acad. Sci. USA 104, 14448–14453 (2007).
pubmed: 17726104
Zhong, Y. et al. Novel retinoic acid receptor alpha agonists for treatment of kidney disease. PLoS ONE 6, e27945 (2011).
pubmed: 22125642
pmcid: 3220717
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT00098020 (2017).
Jiang, T. et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56, 2485–2493 (2007).
pubmed: 17660268
Wang, X. X. et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59, 2916–2927 (2010).
pubmed: 20699418
pmcid: 2963551
Wang, X. X. et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Ren. Physiol. 297, F1587–F1596 (2009).
NIH Office of Dietary Supplements. Vitamin D. ODS https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#en1 (2020).
Perez-Gomez, M. V., Ortiz-Arduan, A. & Lorenzo-Sellares, V. Vitamin D and proteinuria: a critical review of molecular bases and clinical experience. Nefrologia 33, 716–726 (2013).
pubmed: 24089164
Pike, J. W. & Meyer, M. B. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol. Metab. Clin. North Am. 39, 255–269 (2010).
pubmed: 20511050
pmcid: 2879406
Sertznig, P., Seifert, M., Tilgen, W. & Reichrath, J. Peroxisome proliferator-activated receptor (PPAR) and vitamin D receptor (VDR) signaling pathways in melanoma cells: promising new therapeutic targets? J. Steroid Biochem. Mol. Biol. 121, 383–386 (2010).
pubmed: 20214982
Chang, S. W. & Lee, H. C. Vitamin D and health – the missing vitamin in humans. Pediatr. Neonatol. 60, 237–244 (2019).
pubmed: 31101452
Wang, W., Zhang, J., Wang, H., Wang, X. & Liu, S. Vitamin D deficiency enhances insulin resistance by promoting inflammation in type 2 diabetes. Int. J. Clin. Exp. Pathol. 12, 1859–1867 (2019).
pubmed: 31934009
pmcid: 6947100
Talaei, A., Mohamadi, M. & Adgi, Z. The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol. Metab. Syndr. 5, 8 (2013).
pubmed: 23443033
pmcid: 3586569
Mutt, S. J. et al. Vitamin D deficiency induces insulin resistance and re-supplementation attenuates hepatic glucose output via the PI3K-AKT-FOXO1 mediated pathway. Mol. Nutr. Food Res. 64, e1900728 (2020).
pubmed: 31797544
Sonneveld, R. et al. Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am. J. Pathol. 182, 1196–1204 (2013).
pubmed: 23385000
Wang, X. X. et al. Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. Am. J. Physiol. Ren. Physiol. 300, F801–F810 (2011).
Garsen, M. et al. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J. Pathol. 237, 472–481 (2015).
pubmed: 26202309
Branisteanu, D. D., Leenaerts, P., van Damme, B. & Bouillon, R. Partial prevention of active Heymann nephritis by 1α, 25 dihydroxyvitamin D3. Clin. Exp. Immunol. 94, 412–417 (1993).
pubmed: 8252801
pmcid: 1534446
Makibayashi, K. et al. A vitamin D analog ameliorates glomerular injury on rat glomerulonephritis. Am. J. Pathol. 158, 1733–1741 (2001).
pubmed: 11337371
pmcid: 3277319
Zou, M. S. et al. 1,25-Dihydroxyvitamin D3 decreases adriamycin-induced podocyte apoptosis and loss. Int. J. Med. Sci. 7, 290–299 (2010).
pubmed: 20827429
pmcid: 2934728
Zou, M. S. et al. 1,25-Dihydroxyvitamin D3 ameliorates podocytopenia in rats with adriamycin-induced nephropathy. Intern. Med. 49, 2677–2686 (2010).
pubmed: 21173542
Schwarz, U. et al. Effect of 1,25 (OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrectomized rats. Kidney Int. 53, 1696–1705 (1998).
pubmed: 9607202
Sanchez-Nino, M. D. et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol. Dial. Transplant. 26, 1797–1802 (2011).
pubmed: 20504837
Agarwal, R. Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD. Clin. J. Am. Soc. Nephrol. 4, 1523–1528 (2009).
pubmed: 19478099
Chandel, N. et al. Vitamin D receptor deficit induces activation of renin angiotensin system via SIRT1 modulation in podocytes. Exp. Mol. Pathol. 102, 97–105 (2017).
pubmed: 28069388
pmcid: 5331620
Chandel, N. et al. Epigenetic modulation of human podocyte vitamin D receptor in HIV milieu. J. Mol. Biol. 427, 3201–3215 (2015).
pubmed: 26210663
pmcid: 4586951
Xu, L. et al. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J. Diabetes Investig. 7, 680–688 (2016).
pubmed: 27180929
pmcid: 5009129
Cheng, X., Zhao, X., Khurana, S., Bruggeman, L. A. & Kao, H. Y. Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes. PLoS ONE 8, e60213 (2013).
pubmed: 23593176
pmcid: 3617172
He, W., Kang, Y. S., Dai, C. & Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 90–103 (2011).
pubmed: 21030600
pmcid: 3014038
Khurana, S., Bruggeman, L. A. & Kao, H. Y. Nuclear hormone receptors in podocytes. Cell Biosci. 2, 33 (2012).
pubmed: 22995171
pmcid: 3543367
Li, Y. C. Vitamin D receptor signaling in renal and cardiovascular protection. Semin. Nephrol. 33, 433–447 (2013).
pubmed: 24119849
pmcid: 3796773
de Borst, M. H. et al. Active vitamin D treatment for reduction of residual proteinuria: a systematic review. J. Am. Soc. Nephrol. 24, 1863–1871 (2013).
pubmed: 23929770
pmcid: 3810088
Melamed, M. L. & Thadhani, R. I. Vitamin D therapy in chronic kidney disease and end stage renal disease. Clin. J. Am. Soc. Nephrol. 7, 358–365 (2012).
pubmed: 22193236
pmcid: 3280034
de Boer, I. H. et al. Effect of Vitamin D and omega-3 fatty acid supplementation on kidney function in patients with type 2 diabetes: a randomized clinical trial. JAMA 322, 1899–1909 (2019).
pubmed: 31703120
pmcid: 6865245
Fishbane, S. et al. Oral paricalcitol in the treatment of patients with CKD and proteinuria: a randomized trial. Am. J. Kidney Dis. 54, 647–652 (2009).
pubmed: 19596163
Alborzi, P. et al. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension 52, 249–255 (2008).
pubmed: 18606901
de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010).
pubmed: 21055801
Kramer, H., Berns, J. S., Choi, M. J., Martin, K. & Rocco, M. V. 25-Hydroxyvitamin D testing and supplementation in CKD: an NKF-KDOQI controversies report. Am. J. Kidney Dis. 64, 499–509 (2014).
pubmed: 25082101
Le Menuet, D., Viengchareun, S., Muffat-Joly, M., Zennaro, M. C. & Lombes, M. Expression and function of the human mineralocorticoid receptor: lessons from transgenic mouse models. Mol. Cell. Endocrinol. 217, 127–136 (2004).
pubmed: 15134811
Arriza, J. L. et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237, 268–275 (1987).
pubmed: 3037703
Funder, J. W., Pearce, P. T., Smith, R. & Smith, A. I. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242, 583–585 (1988).
pubmed: 2845584
Buonafine, M., Bonnard, B. & Jaisser, F. Mineralocorticoid receptor and cardiovascular disease. Am. J. Hypertens. 31, 1165–1174 (2018).
pubmed: 30192914
Nishiyama, A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens. Res. 42, 293–300 (2019).
pubmed: 30523293
Aldigier, J. C., Kanjanbuch, T., Ma, L. J., Brown, N. J. & Fogo, A. B. Regression of existing glomerulosclerosis by inhibition of aldosterone. J. Am. Soc. Nephrol. 16, 3306–3314 (2005).
pubmed: 16192423
Fujihara, C. K. et al. A novel aldosterone antagonist limits renal injury in 5/6 nephrectomy. Sci. Rep. 7, 7899 (2017).
pubmed: 28801620
pmcid: 5554220
Zhou, X., Ono, H., Ono, Y. & Frohlich, E. D. Aldosterone antagonism ameliorates proteinuria and nephrosclerosis independent of glomerular dynamics in L-NAME/SHR model. Am. J. Nephrol. 24, 242–249 (2004).
pubmed: 15031627
Zitt, E. et al. The selective mineralocorticoid receptor antagonist eplerenone is protective in mild anti-GBM glomeru-lonephritis. Int. J. Clin. Exp. Pathol. 4, 606–615 (2011).
pubmed: 21904636
pmcid: 3160612
Qin, D. et al. Aldosterone mediates glomerular inflammation in experimental mesangial proliferative glomerulonephritis. J. Nephrol. 26, 199–206 (2013).
pubmed: 22641568
Nagase, M. et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47, 1084–1093 (2006).
pubmed: 16636193
Shibata, S., Nagase, M., Yoshida, S., Kawachi, H. & Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49, 355–364 (2007).
pubmed: 17200434
Chen, C. et al. Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways. Nephron Exp. Nephrol. 113, e26–e34 (2009).
pubmed: 19590239
pmcid: 2790761
Nagase, M. et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J. Am. Soc. Nephrol. 17, 3438–3446 (2006).
pubmed: 17082236
Takagi, N. et al. Mineralocorticoid receptor blocker protects against podocyte-dependent glomerulosclerosis. Nephron Extra 2, 17–26 (2012).
pubmed: 22479265
pmcid: 3318935
Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).
pubmed: 19029984
Barrera-Chimal, J., Girerd, S. & Jaisser, F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int. 96, 302–319 (2019).
pubmed: 31133455
Currie, G. et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 17, 127 (2016).
pubmed: 27609359
pmcid: 5015203
Bolignano, D., Palmer, S. C., Navaneethan, S. D. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst. Rev. 4, CD007004 (2014).
Navaneethan, S. D., Nigwekar, S. U., Sehgal, A. R. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 542–551 (2009).
pubmed: 19261819
pmcid: 2653663
Greene, E. L., Kren, S. & Hostetter, T. H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 98, 1063–1068 (1996).
pubmed: 8770880
pmcid: 507523
Rocha, R., Chander, P. N., Zuckerman, A. & Stier, C. T. Jr. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 33, 232–237 (1999).
pubmed: 9931110
Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. J. Clin. Invest. 116, 561–570 (2006).
pubmed: 16511588
pmcid: 2373424
Kummer, S. et al. Estrogen receptor alpha expression in podocytes mediates protection against apoptosis in-vitro and in-vivo. PLoS ONE 6, e27457 (2011).
pubmed: 22096576
pmcid: 3214053
Gross, M. L. et al. Beneficial effects of estrogens on indices of renal damage in uninephrectomized SHRsp rats. J. Am. Soc. Nephrol. 15, 348–358 (2004).
pubmed: 14747381
Doublier, S. et al. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice. Kidney Int. 79, 404–413 (2011).
pubmed: 20962747
Gluhovschi, G. et al. Chronic kidney disease and the involvement of estrogen hormones in its pathogenesis and progression. Rom. J. Intern. Med. 50, 135–144 (2012).
pubmed: 23326957
Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).
pubmed: 29355169
Lee, W. L. et al. The benefits of estrogen or selective estrogen receptor modulator on kidney and its related disease–chronic kidney disease–mineral and bone disorder: osteoporosis. J. Chin. Med. Assoc. 76, 365–371 (2013).
pubmed: 23664736
Melamed, M. L. et al. Raloxifene, a selective estrogen receptor modulator, is renoprotective: a post-hoc analysis. Kidney Int. 79, 241–249 (2011).
pubmed: 20927038
Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat. Struct. Mol. Biol. 18, 556–563 (2011).
pubmed: 21478866
pmcid: 3087838
Weiss, K. et al. Effect of synthetic ligands of PPAR α, β/δ, γ, RAR, RXR and LXR on the fatty acid composition of phospholipids in mice. Lipids 46, 1013–1020 (2011).
pubmed: 21792736
Trasino, S. E., Tang, X. H., Jessurun, J. & Gudas, L. J. Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis. Diabetes, Obes. Metab. 18, 142–151 (2016).
Ling, J. & Kumar, R. Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett. 322, 119–126 (2012).
pubmed: 22433713
Lu, T. C. et al. Retinoic acid utilizes CREB and USF1 in a transcriptional feed-forward loop in order to stimulate MKP1 expression in human immunodeficiency virus-infected podocytes. Mol. Cell Biol. 28, 5785–5794 (2008).
pubmed: 18625721
pmcid: 2546933
Cohen, C. D. et al. Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins. Proc. Natl Acad. Sci. USA 103, 5682–5687 (2006).
pubmed: 16581909
Guo, Y. et al. Podocyte-specific induction of kruppel-like factor 15 restores differentiation markers and attenuates kidney injury in proteinuric kidney disease. J. Am. Soc. Nephrol. 29, 2529–2545 (2018).
pubmed: 30143559
pmcid: 6171275
Endlich, N., Nobiling, R., Kriz, W. & Endlich, K. Expression and signaling of parathyroid hormone-related protein in cultured podocytes. Exp. Nephrol. 9, 436–443 (2001).
pubmed: 11702004
Endlich, N. & Endlich, K. cAMP pathway in podocytes. Microsc. Res. Tech. 57, 228–231 (2002).
pubmed: 12012389
Azeloglu, E. U. et al. Interconnected network motifs control podocyte morphology and kidney function. Sci. Signal. 7, ra12 (2014).
pubmed: 24497609
pmcid: 4220789
Zhong, Y. et al. Roflumilast enhances the renal protective effects of retinoids in an HIV-1 transgenic mouse model of rapidly progressive renal failure. Kidney Int. 81, 856–864 (2012).
pubmed: 22258322
pmcid: 3326224
Shibata, S. et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor–dependent pathway. J. Clin. Invest. 121, 3233–3243 (2011).
pubmed: 21765214
pmcid: 3148723
Wang, X. X., Jiang, T. & Levi, M. Nuclear hormone receptors in diabetic nephropathy. Nat. Rev. Nephrol. 6, 342–351 (2010).
pubmed: 20421884
Yang, J., Zhou, Y. & Guan, Y. PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr. Opin. Nephrol. Hypertens. 21, 97–105 (2012).
pubmed: 22143250
Ishibashi, Y. et al. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation. Microvasc. Res. 85, 54–58 (2013).
pubmed: 23108227
Lee, E. Y. et al. Peroxisome proliferator-activated receptor-δ activation ameliorates albuminuria by preventing nephrin loss and restoring podocyte integrity in type 2 diabetes. Nephrol. Dial. Transplant. 27, 4069–4079 (2012).
pubmed: 22892126
Wang, Y. et al. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J. Am. Soc. Nephrol. 23, 1977–1986 (2012).
pubmed: 23123403
pmcid: 3507366
Guo, J. et al. GSK-3β and vitamin D receptor are involved in β-catenin and Snail signaling in high glucose-induced epithelial-mesenchymal transition of mouse podocytes. Cell Physiol. Biochem. 33, 1087–1096 (2014).
pubmed: 24732862
Verouti, S. N. et al. Vitamin D receptor activators upregulate and rescue podocalyxin expression in high glucose-treated human podocytes. Nephron Exp. Nephrol. 122, 36–50 (2012).
pubmed: 23548800
Guo, J. et al. VDR activation reduces proteinuria and high-glucose-induced injury of kidneys and podocytes by regulating Wnt signaling pathway. Cell Physiol. Biochem. 43, 39–51 (2017).
pubmed: 28848172
Toyonaga, J. et al. Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production. Nephrol. Dial. Transplant. 26, 2475–2484 (2011).
pubmed: 21220752
Han, S. Y. et al. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J. Am. Soc. Nephrol. 17, 1362–1372 (2006).
pubmed: 16571782
Zhou, G., Johansson, U., Peng, X. R., Bamberg, K. & Huang, Y. An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice. Am. J. Transl. Res. 8, 1339–1354 (2016).
pubmed: 27186263
pmcid: 4859623
Nishiyama, A. et al. Mineralocorticoid receptor blockade enhances the antiproteinuric effect of an angiotensin II blocker through inhibiting podocyte injury in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 332, 1072–1080 (2010).
pubmed: 19940106
pmcid: 2835438
Schjoedt, K. J. et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 70, 536–542 (2006).
pubmed: 16775595
Mehdi, U. F., Adams-Huet, B., Raskin, P., Vega, G. L. & Toto, R. D. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2641–2650 (2009).
pubmed: 19926893
pmcid: 2794224
Bakris, G. L. et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314, 884–894 (2015).
pubmed: 26325557
Doublier, S., Lupia, E., Catanuto, P. & Elliot, S. J. Estrogens and progression of diabetic kidney damage. Curr. Diabetes Rev. 7, 28–34 (2011).
pubmed: 21067504
Han, S. Y. et al. Effect of retinoic acid in experimental diabetic nephropathy. Immunol. Cell Biol. 82, 568–576 (2004).
pubmed: 15550114
Wang, X. X. et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J. Am. Soc. Nephrol. 29, 118–137 (2018).
pubmed: 29089371