The dynamic of basal ganglia activity with a multiple covariance method: influences of Parkinson's disease.

Parkinson’s disease basal ganglia functional connectivity functional profile method motor cortex

Journal

Brain communications
ISSN: 2632-1297
Titre abrégé: Brain Commun
Pays: England
ID NLM: 101755125

Informations de publication

Date de publication:
2020
Historique:
received: 03 07 2019
revised: 31 10 2019
accepted: 17 11 2019
entrez: 21 9 2020
pubmed: 22 9 2020
medline: 22 9 2020
Statut: epublish

Résumé

The closed-loop cortico-subcortical pathways of basal ganglia have been extensively used to describe the physiology of these centres and to justify the functional disorders of basal ganglia diseases. This approach justifies some experimental and clinical data but not others, and furthermore, it does not include a number of subcortical circuits that may produce a more complex basal ganglia dynamic than that expected for closed-loop linear networks. This work studied the functional connectivity of the main regions of the basal ganglia motor circuit with magnetic resonance imaging and a new method (functional profile method), which can analyse the multiple covariant activity of human basal ganglia. The functional profile method identified the most frequent covariant functional status (profiles) of the basal ganglia motor circuit, ordering them according to their relative frequency and identifying the most frequent successions between profiles (profile transitions). The functional profile method classified profiles as input profiles that accept the information coming from other networks, output profiles involved in the output of processed information to other networks and highly interconnected internal profiles that accept transitions from input profiles and send transitions to output profiles. Profile transitions showed a previously unobserved functional dynamic of human basal ganglia, suggesting that the basal ganglia motor circuit may work as a dynamic multiple covariance network. The number of internal profiles and internal transitions showed a striking decrease in patients with Parkinson's disease, a fact not observed for input and output profiles. This suggests that basal ganglia of patients with Parkinson's disease respond to requirements coming from other neuronal networks, but because the internal processing of information is drastically weakened, its response will be insufficient and perhaps also self-defeating. These marked effects were found in patients with few motor disorders, suggesting that the functional profile method may be an early procedure to detect the first stages of the Parkinson's disease when the motor disorders are not very evident. The multiple covariance activity found presents a complementary point of view to the cortico-subcortical closed-loop model of basal ganglia. The functional profile method may be easily applied to other brain networks, and it may provide additional explanations for the clinical manifestations of other basal ganglia disorders.

Identifiants

pubmed: 32954313
doi: 10.1093/braincomms/fcz044
pii: fcz044
pmc: PMC7425309
doi:

Types de publication

Journal Article

Langues

eng

Pagination

fcz044

Informations de copyright

© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain.

Références

Nature. 2010 Jul 29;466(7306):622-6
pubmed: 20613723
Synapse. 2003 Sep 15;49(4):216-25
pubmed: 12827640
J Appl Math. 2013 May 21;2013:
pubmed: 24415902
Exp Brain Res. 1989;77(1):113-26
pubmed: 2792254
Behav Neurol. 2015;2015:983606
pubmed: 26078489
Neuron. 2014 Jan 8;81(1):153-64
pubmed: 24411738
Brain. 2018 Sep 1;141(9):2655-2669
pubmed: 30084974
Ann Clin Transl Neurol. 2019 Mar 28;6(5):902-912
pubmed: 31139688
Annu Rev Physiol. 2004;66:735-69
pubmed: 14977420
Trends Neurosci. 2005 Aug;28(8):401-7
pubmed: 15982753
Nature. 2013 Feb 14;494(7436):238-42
pubmed: 23354054
Trends Neurosci. 1989 Oct;12(10):366-75
pubmed: 2479133
Exp Brain Res. 2003 Jul;151(2):167-72
pubmed: 12768261
Parkinsonism Relat Disord. 2019 Jun;63:100-105
pubmed: 30833228
J Neurosci. 2004 Jul 21;24(29):6417-26
pubmed: 15269251
Front Neurosci. 2017 Jun 20;11:345
pubmed: 28676738
Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):1003-37
pubmed: 12217171
Front Syst Neurosci. 2013 Dec 30;7:122
pubmed: 24416002
Sci Rep. 2016 Jul 25;6:30425
pubmed: 27451921
Trends Neurosci. 2019 Mar;42(3):205-220
pubmed: 30621912
Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):765-72
pubmed: 9448239
J Neuroeng Rehabil. 2016 Apr 19;13:39
pubmed: 27094039
Trends Neurosci. 1990 Jul;13(7):281-5
pubmed: 1695404
Cereb Cortex. 2010 May;20(5):1187-94
pubmed: 19729393
Philos Trans R Soc Lond B Biol Sci. 2014 Jan 20;369(1637):20120473
pubmed: 24446506
Hum Brain Mapp. 2019 May;40(7):2017-2032
pubmed: 30318709
Hum Brain Mapp. 2015 Apr;36(4):1335-47
pubmed: 25429921
Trends Neurosci. 2002 Jan;25(1):27-31
pubmed: 11801335
Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S237-40
pubmed: 20082999
Eur J Neurosci. 2003 Jul;18(1):53-60
pubmed: 12859337
Nat Commun. 2019 Dec 25;10(1):1220
pubmed: 30899012
Neuroscience. 1992 Oct;50(3):571-95
pubmed: 1279464
Biometrics. 2016 Sep;72(3):751-9
pubmed: 26873398
Gait Posture. 2007 Oct;26(4):516-25
pubmed: 17196819
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
pubmed: 16945915
Exp Neurol. 2007 Nov;208(1):38-46
pubmed: 17692315
Behav Brain Res. 2015 Sep 1;290:17-31
pubmed: 25907747
Neuroimage. 2014 Jan 1;84:320-41
pubmed: 23994314
Hum Brain Mapp. 2006 May;27(5):392-401
pubmed: 16596654
Neuroscientist. 2017 Jun;23(3):299-313
pubmed: 27306757
Mov Disord Clin Pract. 2015 Mar 28;2(2):204
pubmed: 30363919
IEEE Trans Med Imaging. 2011 May;30(5):1076-89
pubmed: 21138799
Nat Rev Neurosci. 2007 Sep;8(9):700-11
pubmed: 17704812
Annu Rev Neurosci. 2006;29:449-76
pubmed: 16776593
Brain Imaging Behav. 2017 Apr;11(2):417-429
pubmed: 26935555
J Physiol. 2006 Mar 15;571(Pt 3):579-91
pubmed: 16410285
Annu Rev Neurosci. 1986;9:357-81
pubmed: 3085570
Neuroimage Clin. 2019;22:101708
pubmed: 30763902
J Neurophysiol. 2011 Sep;106(3):1299-309
pubmed: 21653722

Auteurs

Clara Rodriguez-Sabate (C)

Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands 28907, Spain.
Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain.
Department of Psychiatry, Getafe University Hospital, Madrid 28031, Spain.

Ingrid Morales (I)

Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands 28907, Spain.
Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain.

Ricardo Puertas-Avendaño (R)

Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands 28907, Spain.

Manuel Rodriguez (M)

Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands 28907, Spain.
Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain.

Classifications MeSH