Weak Dimensionality Dependence and Dominant Role of Ionic Fluctuations in the Charge-Density-Wave Transition of NbSe_{2}.


Journal

Physical review letters
ISSN: 1079-7114
Titre abrégé: Phys Rev Lett
Pays: United States
ID NLM: 0401141

Informations de publication

Date de publication:
04 Sep 2020
Historique:
received: 17 04 2020
accepted: 30 07 2020
entrez: 21 9 2020
pubmed: 22 9 2020
medline: 22 9 2020
Statut: ppublish

Résumé

Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe_{2}. While scanning tunneling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave transition temperature in the monolayer similar to the bulk, around 33 K, Raman experiments on exfoliated samples observe a large enhancement of the transition temperature up to 145 K. By employing a nonperturbative approach to deal with anharmonicity, we calculate from first principles the temperature dependence of the phonon spectra both for bulk and monolayer. In both cases, the charge-density-wave transition temperature is estimated as the temperature at which the phonon energy of the mode driving the structural instability vanishes. The obtained transition temperature in the bulk is around 59 K, in rather good agreement with experiments, and it is just slightly increased in the single-layer limit to 73 K, showing the weak dependence of the transition on dimensionality. Environmental factors could motivate the disagreement between the transition temperatures reported by experiments. Our analysis also demonstrates the predominance of ionic fluctuations over electronic ones in the melting of the charge-density-wave order.

Identifiants

pubmed: 32955304
doi: 10.1103/PhysRevLett.125.106101
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

106101

Auteurs

Raffaello Bianco (R)

Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal pasealekua 5, 20018 Donostia/San Sebastián, Spain.

Lorenzo Monacelli (L)

Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy.

Matteo Calandra (M)

Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy.
Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Italy.
Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588, F-75252 Paris, France.

Francesco Mauri (F)

Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genova, Italy.

Ion Errea (I)

Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal pasealekua 5, 20018 Donostia/San Sebastián, Spain.
Fisika Aplikatua 1 Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Europa Plaza 1, 20018 Donostia/San Sebastián, Spain.
Donostia International Physics Center (DIPC), Manuel Lardizabal pasealekua 4, 20018 Donostia/San Sebastián, Spain.

Classifications MeSH