Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2.


Journal

Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991

Informations de publication

Date de publication:
May 2021
Historique:
received: 28 07 2020
accepted: 14 09 2020
pubmed: 23 9 2020
medline: 20 11 2021
entrez: 22 9 2020
Statut: ppublish

Résumé

The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.

Identifiants

pubmed: 32959226
doi: 10.1007/s12031-020-01712-7
pii: 10.1007/s12031-020-01712-7
doi:

Substances chimiques

Chemokines 0
Lipocalin-2 0
Lipopolysaccharides 0
Lcn2 protein, mouse 126469-30-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

933-942

Subventions

Organisme : Medizinische Fakultät, RWTH Aachen University
ID : 103/20
Organisme : Medizinische Fakultät, RWTH Aachen University
ID : O3-1

Références

Al Nimer F et al (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol Neuroimmunol Neuroinflamm 3:e191–e191. https://doi.org/10.1212/NXI.0000000000000191
doi: 10.1212/NXI.0000000000000191 pubmed: 26770997 pmcid: 4708925
Al-Temaimi R, AbuBaker J, Al-Khairi I, Alroughani R (2017) Remyelination modulators in multiple sclerosis patients. Exp Mol Pathol 103:237–241. https://doi.org/10.1016/j.yexmp.2017.11.004
doi: 10.1016/j.yexmp.2017.11.004 pubmed: 29108879
Arlinghaus R, Leng X (2008) Requirement of lipocalin 2 for chronic myeloid leukemia. Leuk Lymphoma 49:600–603. https://doi.org/10.1080/10428190701859664
doi: 10.1080/10428190701859664 pubmed: 18398717
Asimakopoulou A, Weiskirchen S, Weiskirchen R (2016) Lipocalin 2 (LCN2) expression in hepatic malfunction and therapy. Front Physiol 7:430. https://doi.org/10.3389/fphys.2016.00430
doi: 10.3389/fphys.2016.00430 pubmed: 27729871 pmcid: 5037186
Bartolome F, Antequera D, de la Cueva M, Rubio-Fernandez M, Castro N, Pascual C, Camins A, Carro E (2020) Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge. J Neuroinflammation 17:22–22. https://doi.org/10.1186/s12974-020-1702-2
doi: 10.1186/s12974-020-1702-2 pubmed: 31937343 pmcid: 6961312
Belcher JM et al (2014) Urinary biomarkers and progression of AKI in patients with cirrhosis. Clin J Am Soc Nephrol 9:1857–1867. https://doi.org/10.2215/CJN.09430913
doi: 10.2215/CJN.09430913 pubmed: 25183658 pmcid: 4220770
Berger T, Togawa A, Duncan GS, Elia AJ, You-ten A, Wakeham A, Fong HEH, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103:1834–1839. https://doi.org/10.1073/pnas.0510847103
doi: 10.1073/pnas.0510847103 pubmed: 16446425 pmcid: 1413671
Borkham-Kamphorst E, Van de Leur E, Haas U, Weiskirchen R (2019) Liver parenchymal cells lacking Lipocalin 2 (LCN2) are prone to endoplasmic reticulum stress and unfolded protein response. Cell Signal 55:90–99. https://doi.org/10.1016/j.cellsig.2019.01.001
doi: 10.1016/j.cellsig.2019.01.001 pubmed: 30615971
Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156. https://doi.org/10.1084/jem.20041918
doi: 10.1084/jem.20041918 pubmed: 15998793 pmcid: 2212896
Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308. https://doi.org/10.1016/s0896-6273(00)80781-3
doi: 10.1016/s0896-6273(00)80781-3 pubmed: 10399936
Chan YR, Liu JS, Pociask DA, Zheng M, Mietzner TA, Berger T, Mak TW, Clifton MC, Strong RK, Ray P, Kolls JK (2009) Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol 182:4947–4956. https://doi.org/10.4049/jimmunol.0803282
doi: 10.4049/jimmunol.0803282 pubmed: 19342674 pmcid: 2708928
Chia W-J, Dawe GS, Ong W-Y (2011) Expression and localization of the iron–siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem Int 59:591–599. https://doi.org/10.1016/j.neuint.2011.04.007
doi: 10.1016/j.neuint.2011.04.007 pubmed: 21683107
Chung IH et al (2015) Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer. Oncotarget 6:15050–15064. https://doi.org/10.18632/oncotarget.3670
doi: 10.18632/oncotarget.3670 pubmed: 25940797 pmcid: 4558135
Du Y, Li W, Lin L, Lo EH, Xing C (2019) Effects of lipocalin-2 on brain endothelial adhesion and permeability. PLoS One 14:e0218965. https://doi.org/10.1371/journal.pone.0218965
doi: 10.1371/journal.pone.0218965 pubmed: 31269059 pmcid: 6608966
Durrant DM, Williams JL, Daniels BP, Klein RS (2014) Chemokines referee inflammation within the central nervous system during infection and disease. Adv Med 2014:806741. https://doi.org/10.1155/2014/806741
doi: 10.1155/2014/806741 pubmed: 26556427 pmcid: 4590974
Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience 54:15–36. https://doi.org/10.1016/0306-4522(93)90380-x
doi: 10.1016/0306-4522(93)90380-x pubmed: 8515840 pmcid: 7130906
Egashira Y, Hua Y, Keep RF, Iwama T, Xi G (2016) Lipocalin 2 and blood-brain barrier disruption in white matter after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 121:131–134. https://doi.org/10.1007/978-3-319-18497-5_23
doi: 10.1007/978-3-319-18497-5_23 pubmed: 26463936
El Karoui K et al (2016) Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via lipocalin 2. Nat Commun 7:10330. https://doi.org/10.1038/ncomms10330
doi: 10.1038/ncomms10330 pubmed: 26787103 pmcid: 4735759
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155. https://doi.org/10.1523/JNEUROSCI.3547-03.2004
doi: 10.1523/JNEUROSCI.3547-03.2004 pubmed: 14999065 pmcid: 6730429
Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301. https://doi.org/10.1016/j.expneurol.2007.05.014
doi: 10.1016/j.expneurol.2007.05.014 pubmed: 17617407
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921. https://doi.org/10.1038/nature03104
doi: 10.1038/nature03104 pubmed: 15531878
Geyer S, Jacobs M, Hsu N-J (2019) Immunity against bacterial infection of the central nervous system: an astrocyte perspective. Front Mol Neurosci 12. https://doi.org/10.3389/fnmol.2019.00057
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043. https://doi.org/10.1016/s1097-2765(02)00708-6
doi: 10.1016/s1097-2765(02)00708-6 pubmed: 12453412
Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255. https://doi.org/10.1002/glia.21094
doi: 10.1002/glia.21094 pubmed: 21125645
Guglani L, Gopal R, Rangel-Moreno J, Junecko BF, Lin Y, Berger T, Mak TW, Alcorn JF, Randall TD, Reinhart TA, Chan YR, Khader SA (2012) Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PLoS One 7:e50052. https://doi.org/10.1371/journal.pone.0050052
doi: 10.1371/journal.pone.0050052 pubmed: 23185529 pmcid: 3502292
Hatten ME, Liem RKH, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233–243. https://doi.org/10.1002/glia.440040215
doi: 10.1002/glia.440040215 pubmed: 1827781
Herberg J et al. (2019) Lipocalin-2 is a sensitive and specific marker of bacterial infection in children. bioRxiv:623819 doi: https://doi.org/10.1101/623819
Hosking MP, Lane TE (2010) The role of chemokines during viral infection of the CNS. PLoS Pathog 6:e1000937. https://doi.org/10.1371/journal.ppat.1000937
doi: 10.1371/journal.ppat.1000937 pubmed: 20686655 pmcid: 2912390
Hu C, Yang K, Li M, Huang W, Zhang F, Wang H (2018) Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther 11:8099–8106. https://doi.org/10.2147/OTT.S181223
doi: 10.2147/OTT.S181223 pubmed: 30519052 pmcid: 6239117
Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245. https://doi.org/10.1016/j.surneu.2005.12.028
doi: 10.1016/j.surneu.2005.12.028 pubmed: 16935624
Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330. https://doi.org/10.4049/jimmunol.175.7.4320
doi: 10.4049/jimmunol.175.7.4320 pubmed: 16177072
Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, Asmann Y, Fryer JD (2018) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 23:344–350. https://doi.org/10.1038/mp.2016.243
doi: 10.1038/mp.2016.243 pubmed: 28070126
Kery R, Chen A, Kirschen G (2020) Genetic targeting of astrocytes to combat neurodegenerative disease. Neural Regen Res 15:199–211. https://doi.org/10.4103/1673-5374.265541
doi: 10.4103/1673-5374.265541 pubmed: 31552885
Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043
doi: 10.1038/nn.4043 pubmed: 26108722 pmcid: 5258184
Kipp M, Norkute A, Johann S, Lorenz L, Braun A, Hieble A, Gingele S, Pott F, Richter J, Beyer C (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci 35:235–243. https://doi.org/10.1007/s12031-008-9057-7
doi: 10.1007/s12031-008-9057-7 pubmed: 18373222
Kubben FJ et al (2007) Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer. Eur J Cancer 43:1869–1876. https://doi.org/10.1016/j.ejca.2007.05.013
doi: 10.1016/j.ejca.2007.05.013 pubmed: 17604154
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR (2018) The role of CXCR3 and its chemokine ligands in skin disease and cancer. Front Med 5. https://doi.org/10.3389/fmed.2018.00271
Lee S, Park J-Y, Lee W-H, Kim H, Park H-C, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29:234–249. https://doi.org/10.1523/jneurosci.5273-08.2009
doi: 10.1523/jneurosci.5273-08.2009 pubmed: 19129400 pmcid: 6664907
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 286:43855–43870. https://doi.org/10.1074/jbc.M111.299248
doi: 10.1074/jbc.M111.299248 pubmed: 22030398 pmcid: 3243551
Li K, Li J, Zheng J, Qin S (2019) Reactive astrocytes in neurodegenerative diseases. Aging Dis 10:664–675. https://doi.org/10.14336/AD.2018.0720
doi: 10.14336/AD.2018.0720 pubmed: 31165009 pmcid: 6538217
Liu MT, Chen BP, Oertel P, Buchmeier MJ, Armstrong D, Hamilton TA, Lane TE (2000) The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J Immunol 165:2327–2330. https://doi.org/10.4049/jimmunol.165.5.2327
doi: 10.4049/jimmunol.165.5.2327 pubmed: 10946253
Liu MT, Keirstead HS, Lane TE (2001) Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol 167:4091–4097. https://doi.org/10.4049/jimmunol.167.7.4091
doi: 10.4049/jimmunol.167.7.4091 pubmed: 11564831
Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969. https://doi.org/10.1084/jem.184.3.963
doi: 10.1084/jem.184.3.963 pubmed: 9064356
Lu M, Xia L, Liu YC, Hochman T, Bizzari L, Aruch D, Lew J, Weinberg R, Goldberg JD, Hoffman R (2015) Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood 126:972–982. https://doi.org/10.1182/blood-2014-12-618595
doi: 10.1182/blood-2014-12-618595 pubmed: 26022238 pmcid: 4543230
McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci Off J Soc Neurosci 11:3398–3411. https://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
doi: 10.1523/JNEUROSCI.11-11-03398.1991
Mills Ko E, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM, Pleasure D (2014) Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 11:105. https://doi.org/10.1186/1742-2094-11-105
doi: 10.1186/1742-2094-11-105 pubmed: 24924222 pmcid: 4066277
Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H (2017) Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 28:388–397. https://doi.org/10.1016/j.tem.2017.01.003
doi: 10.1016/j.tem.2017.01.003 pubmed: 28214071
Ni W, Zheng M, Xi G, Keep RF, Hua Y (2015) Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 35:1454–1461. https://doi.org/10.1038/jcbfm.2015.52
doi: 10.1038/jcbfm.2015.52 pubmed: 25853903 pmcid: 4640334
Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53:213–220. https://doi.org/10.1097/00005072-199405000-00001
doi: 10.1097/00005072-199405000-00001 pubmed: 8176405
Pak-Wittel MA, Yang L, Sojka DK, Rivenbark JG, Yokoyama WM (2013) Interferon-gamma mediates chemokine-dependent recruitment of natural killer cells during viral infection. Proc Natl Acad Sci U S A 110:E50–E59. https://doi.org/10.1073/pnas.1220456110
doi: 10.1073/pnas.1220456110 pubmed: 23248310
Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431. https://doi.org/10.1016/j.tins.2009.05.001
doi: 10.1016/j.tins.2009.05.001 pubmed: 19615761
Perez Bay AE, Schreiner R, Benedicto I, Paz Marzolo M, Banfelder J, Weinstein AM, Rodriguez-Boulan EJ (2016) The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells. Nat Commun 7:11550. https://doi.org/10.1038/ncomms11550
doi: 10.1038/ncomms11550 pubmed: 27180806 pmcid: 4873671
Pistritto G, Franzese O, Pozzoli G, Mancuso C, Tringali G, Preziosi P, Navarra P (1999) Bacterial lipopolysaccharide increases prostaglandin production by rat astrocytes via inducible cyclo-oxygenase: evidence for the involvement of nuclear factor kappaB. Biochem Biophys Res Commun 263:570–574. https://doi.org/10.1006/bbrc.1999.1413
doi: 10.1006/bbrc.1999.1413 pubmed: 10491333
Ranjbar Taklimie F, Gasterich N, Scheld M, Weiskirchen R, Beyer C, Clarner T, Zendedel A (2019) Hypoxia induces astrocyte-derived lipocalin-2 in ischemic stroke. Int J Mol Sci 20. https://doi.org/10.3390/ijms20061271
Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577. https://doi.org/10.1016/s0166-2236(97)01139-9
doi: 10.1016/s0166-2236(97)01139-9 pubmed: 9416670
Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439. https://doi.org/10.1038/nri2565
doi: 10.1038/nri2565 pubmed: 19461673
Russo MV, McGavern DB (2015) Immune surveillance of the CNS following infection and injury. Trends Immunol 36:637–650. https://doi.org/10.1016/j.it.2015.08.002
doi: 10.1016/j.it.2015.08.002 pubmed: 26431941 pmcid: 4592776
Smith ER, Zurakowski D, Saad A, Scott RM, Moses MA (2008) Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res 14:2378–2386. https://doi.org/10.1158/1078-0432.CCR-07-1253
doi: 10.1158/1078-0432.CCR-07-1253 pubmed: 18413828
Soni SS, Ronco C, Katz N, Cruz DN (2009) Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purif 28:165–174. https://doi.org/10.1159/000227785
doi: 10.1159/000227785 pubmed: 19590184
Spuch C, Navarro C (2010) Expression and functions of LRP-2 in central nervous system: progress in understanding its regulation and the potential use for treatment of neurodegenerative diseases. Immunol Endocr Metab Agents Med Chem Curr Med Chem 10:249–254
Suk K (2016) Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol 144:158–172. https://doi.org/10.1016/j.pneurobio.2016.08.001
doi: 10.1016/j.pneurobio.2016.08.001 pubmed: 27498195
van Neerven S, Nemes A, Imholz P, Regen T, Denecke B, Johann S, Beyer C, Hanisch UK, Mey J (2010) Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neuroimmunol 229:169–179. https://doi.org/10.1016/j.jneuroim.2010.08.005
doi: 10.1016/j.jneuroim.2010.08.005 pubmed: 20826012
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016
doi: 10.1152/physrev.00042.2016 pubmed: 29351512
Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci Off J Soc Neurosci 29:11511–11522. https://doi.org/10.1523/JNEUROSCI.1514-09.2009
doi: 10.1523/JNEUROSCI.1514-09.2009
Wang G, Weng YC, Han X, Whaley JD, McCrae KR, Chou WH (2015) Lipocalin-2 released in response to cerebral ischaemia mediates reperfusion injury in mice. J Cell Mol Med 19:1637–1645. https://doi.org/10.1111/jcmm.12538
doi: 10.1111/jcmm.12538 pubmed: 25702801 pmcid: 4511361
Xing C et al (2014) Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45:2085–2092. https://doi.org/10.1161/STROKEAHA.114.005733
doi: 10.1161/STROKEAHA.114.005733 pubmed: 24916903 pmcid: 4122238
Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A 106:3913–3918. https://doi.org/10.1073/pnas.0810617106
doi: 10.1073/pnas.0810617106 pubmed: 19237579 pmcid: 2656179
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410. https://doi.org/10.1523/jneurosci.6221-11.2012
doi: 10.1523/jneurosci.6221-11.2012 pubmed: 22553043 pmcid: 3480225

Auteurs

Natalie Gasterich (N)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany. ngasterich@ukaachen.de.

Sophie Wetz (S)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.

Stefan Tillmann (S)

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.

Lena Fein (L)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.

Anke Seifert (A)

Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany.

Alexander Slowik (A)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.

Ralf Weiskirchen (R)

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.

Adib Zendedel (A)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.

Andreas Ludwig (A)

Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany.

Steffen Koschmieder (S)

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.

Cordian Beyer (C)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.

Tim Clarner (T)

Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH