Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2.
Astrocyte
Infection
Lipocalin 2
Neuroinflammation
Journal
Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
received:
28
07
2020
accepted:
14
09
2020
pubmed:
23
9
2020
medline:
20
11
2021
entrez:
22
9
2020
Statut:
ppublish
Résumé
The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.
Identifiants
pubmed: 32959226
doi: 10.1007/s12031-020-01712-7
pii: 10.1007/s12031-020-01712-7
doi:
Substances chimiques
Chemokines
0
Lipocalin-2
0
Lipopolysaccharides
0
Lcn2 protein, mouse
126469-30-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
933-942Subventions
Organisme : Medizinische Fakultät, RWTH Aachen University
ID : 103/20
Organisme : Medizinische Fakultät, RWTH Aachen University
ID : O3-1
Références
Al Nimer F et al (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol Neuroimmunol Neuroinflamm 3:e191–e191. https://doi.org/10.1212/NXI.0000000000000191
doi: 10.1212/NXI.0000000000000191
pubmed: 26770997
pmcid: 4708925
Al-Temaimi R, AbuBaker J, Al-Khairi I, Alroughani R (2017) Remyelination modulators in multiple sclerosis patients. Exp Mol Pathol 103:237–241. https://doi.org/10.1016/j.yexmp.2017.11.004
doi: 10.1016/j.yexmp.2017.11.004
pubmed: 29108879
Arlinghaus R, Leng X (2008) Requirement of lipocalin 2 for chronic myeloid leukemia. Leuk Lymphoma 49:600–603. https://doi.org/10.1080/10428190701859664
doi: 10.1080/10428190701859664
pubmed: 18398717
Asimakopoulou A, Weiskirchen S, Weiskirchen R (2016) Lipocalin 2 (LCN2) expression in hepatic malfunction and therapy. Front Physiol 7:430. https://doi.org/10.3389/fphys.2016.00430
doi: 10.3389/fphys.2016.00430
pubmed: 27729871
pmcid: 5037186
Bartolome F, Antequera D, de la Cueva M, Rubio-Fernandez M, Castro N, Pascual C, Camins A, Carro E (2020) Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge. J Neuroinflammation 17:22–22. https://doi.org/10.1186/s12974-020-1702-2
doi: 10.1186/s12974-020-1702-2
pubmed: 31937343
pmcid: 6961312
Belcher JM et al (2014) Urinary biomarkers and progression of AKI in patients with cirrhosis. Clin J Am Soc Nephrol 9:1857–1867. https://doi.org/10.2215/CJN.09430913
doi: 10.2215/CJN.09430913
pubmed: 25183658
pmcid: 4220770
Berger T, Togawa A, Duncan GS, Elia AJ, You-ten A, Wakeham A, Fong HEH, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103:1834–1839. https://doi.org/10.1073/pnas.0510847103
doi: 10.1073/pnas.0510847103
pubmed: 16446425
pmcid: 1413671
Borkham-Kamphorst E, Van de Leur E, Haas U, Weiskirchen R (2019) Liver parenchymal cells lacking Lipocalin 2 (LCN2) are prone to endoplasmic reticulum stress and unfolded protein response. Cell Signal 55:90–99. https://doi.org/10.1016/j.cellsig.2019.01.001
doi: 10.1016/j.cellsig.2019.01.001
pubmed: 30615971
Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156. https://doi.org/10.1084/jem.20041918
doi: 10.1084/jem.20041918
pubmed: 15998793
pmcid: 2212896
Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308. https://doi.org/10.1016/s0896-6273(00)80781-3
doi: 10.1016/s0896-6273(00)80781-3
pubmed: 10399936
Chan YR, Liu JS, Pociask DA, Zheng M, Mietzner TA, Berger T, Mak TW, Clifton MC, Strong RK, Ray P, Kolls JK (2009) Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol 182:4947–4956. https://doi.org/10.4049/jimmunol.0803282
doi: 10.4049/jimmunol.0803282
pubmed: 19342674
pmcid: 2708928
Chia W-J, Dawe GS, Ong W-Y (2011) Expression and localization of the iron–siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem Int 59:591–599. https://doi.org/10.1016/j.neuint.2011.04.007
doi: 10.1016/j.neuint.2011.04.007
pubmed: 21683107
Chung IH et al (2015) Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer. Oncotarget 6:15050–15064. https://doi.org/10.18632/oncotarget.3670
doi: 10.18632/oncotarget.3670
pubmed: 25940797
pmcid: 4558135
Du Y, Li W, Lin L, Lo EH, Xing C (2019) Effects of lipocalin-2 on brain endothelial adhesion and permeability. PLoS One 14:e0218965. https://doi.org/10.1371/journal.pone.0218965
doi: 10.1371/journal.pone.0218965
pubmed: 31269059
pmcid: 6608966
Durrant DM, Williams JL, Daniels BP, Klein RS (2014) Chemokines referee inflammation within the central nervous system during infection and disease. Adv Med 2014:806741. https://doi.org/10.1155/2014/806741
doi: 10.1155/2014/806741
pubmed: 26556427
pmcid: 4590974
Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience 54:15–36. https://doi.org/10.1016/0306-4522(93)90380-x
doi: 10.1016/0306-4522(93)90380-x
pubmed: 8515840
pmcid: 7130906
Egashira Y, Hua Y, Keep RF, Iwama T, Xi G (2016) Lipocalin 2 and blood-brain barrier disruption in white matter after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 121:131–134. https://doi.org/10.1007/978-3-319-18497-5_23
doi: 10.1007/978-3-319-18497-5_23
pubmed: 26463936
El Karoui K et al (2016) Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via lipocalin 2. Nat Commun 7:10330. https://doi.org/10.1038/ncomms10330
doi: 10.1038/ncomms10330
pubmed: 26787103
pmcid: 4735759
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155. https://doi.org/10.1523/JNEUROSCI.3547-03.2004
doi: 10.1523/JNEUROSCI.3547-03.2004
pubmed: 14999065
pmcid: 6730429
Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301. https://doi.org/10.1016/j.expneurol.2007.05.014
doi: 10.1016/j.expneurol.2007.05.014
pubmed: 17617407
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921. https://doi.org/10.1038/nature03104
doi: 10.1038/nature03104
pubmed: 15531878
Geyer S, Jacobs M, Hsu N-J (2019) Immunity against bacterial infection of the central nervous system: an astrocyte perspective. Front Mol Neurosci 12. https://doi.org/10.3389/fnmol.2019.00057
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043. https://doi.org/10.1016/s1097-2765(02)00708-6
doi: 10.1016/s1097-2765(02)00708-6
pubmed: 12453412
Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255. https://doi.org/10.1002/glia.21094
doi: 10.1002/glia.21094
pubmed: 21125645
Guglani L, Gopal R, Rangel-Moreno J, Junecko BF, Lin Y, Berger T, Mak TW, Alcorn JF, Randall TD, Reinhart TA, Chan YR, Khader SA (2012) Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PLoS One 7:e50052. https://doi.org/10.1371/journal.pone.0050052
doi: 10.1371/journal.pone.0050052
pubmed: 23185529
pmcid: 3502292
Hatten ME, Liem RKH, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233–243. https://doi.org/10.1002/glia.440040215
doi: 10.1002/glia.440040215
pubmed: 1827781
Herberg J et al. (2019) Lipocalin-2 is a sensitive and specific marker of bacterial infection in children. bioRxiv:623819 doi: https://doi.org/10.1101/623819
Hosking MP, Lane TE (2010) The role of chemokines during viral infection of the CNS. PLoS Pathog 6:e1000937. https://doi.org/10.1371/journal.ppat.1000937
doi: 10.1371/journal.ppat.1000937
pubmed: 20686655
pmcid: 2912390
Hu C, Yang K, Li M, Huang W, Zhang F, Wang H (2018) Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther 11:8099–8106. https://doi.org/10.2147/OTT.S181223
doi: 10.2147/OTT.S181223
pubmed: 30519052
pmcid: 6239117
Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245. https://doi.org/10.1016/j.surneu.2005.12.028
doi: 10.1016/j.surneu.2005.12.028
pubmed: 16935624
Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330. https://doi.org/10.4049/jimmunol.175.7.4320
doi: 10.4049/jimmunol.175.7.4320
pubmed: 16177072
Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, Asmann Y, Fryer JD (2018) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 23:344–350. https://doi.org/10.1038/mp.2016.243
doi: 10.1038/mp.2016.243
pubmed: 28070126
Kery R, Chen A, Kirschen G (2020) Genetic targeting of astrocytes to combat neurodegenerative disease. Neural Regen Res 15:199–211. https://doi.org/10.4103/1673-5374.265541
doi: 10.4103/1673-5374.265541
pubmed: 31552885
Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. https://doi.org/10.1038/nn.4043
doi: 10.1038/nn.4043
pubmed: 26108722
pmcid: 5258184
Kipp M, Norkute A, Johann S, Lorenz L, Braun A, Hieble A, Gingele S, Pott F, Richter J, Beyer C (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci 35:235–243. https://doi.org/10.1007/s12031-008-9057-7
doi: 10.1007/s12031-008-9057-7
pubmed: 18373222
Kubben FJ et al (2007) Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer. Eur J Cancer 43:1869–1876. https://doi.org/10.1016/j.ejca.2007.05.013
doi: 10.1016/j.ejca.2007.05.013
pubmed: 17604154
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR (2018) The role of CXCR3 and its chemokine ligands in skin disease and cancer. Front Med 5. https://doi.org/10.3389/fmed.2018.00271
Lee S, Park J-Y, Lee W-H, Kim H, Park H-C, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29:234–249. https://doi.org/10.1523/jneurosci.5273-08.2009
doi: 10.1523/jneurosci.5273-08.2009
pubmed: 19129400
pmcid: 6664907
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 286:43855–43870. https://doi.org/10.1074/jbc.M111.299248
doi: 10.1074/jbc.M111.299248
pubmed: 22030398
pmcid: 3243551
Li K, Li J, Zheng J, Qin S (2019) Reactive astrocytes in neurodegenerative diseases. Aging Dis 10:664–675. https://doi.org/10.14336/AD.2018.0720
doi: 10.14336/AD.2018.0720
pubmed: 31165009
pmcid: 6538217
Liu MT, Chen BP, Oertel P, Buchmeier MJ, Armstrong D, Hamilton TA, Lane TE (2000) The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J Immunol 165:2327–2330. https://doi.org/10.4049/jimmunol.165.5.2327
doi: 10.4049/jimmunol.165.5.2327
pubmed: 10946253
Liu MT, Keirstead HS, Lane TE (2001) Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol 167:4091–4097. https://doi.org/10.4049/jimmunol.167.7.4091
doi: 10.4049/jimmunol.167.7.4091
pubmed: 11564831
Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969. https://doi.org/10.1084/jem.184.3.963
doi: 10.1084/jem.184.3.963
pubmed: 9064356
Lu M, Xia L, Liu YC, Hochman T, Bizzari L, Aruch D, Lew J, Weinberg R, Goldberg JD, Hoffman R (2015) Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood 126:972–982. https://doi.org/10.1182/blood-2014-12-618595
doi: 10.1182/blood-2014-12-618595
pubmed: 26022238
pmcid: 4543230
McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci Off J Soc Neurosci 11:3398–3411. https://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
doi: 10.1523/JNEUROSCI.11-11-03398.1991
Mills Ko E, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM, Pleasure D (2014) Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 11:105. https://doi.org/10.1186/1742-2094-11-105
doi: 10.1186/1742-2094-11-105
pubmed: 24924222
pmcid: 4066277
Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H (2017) Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 28:388–397. https://doi.org/10.1016/j.tem.2017.01.003
doi: 10.1016/j.tem.2017.01.003
pubmed: 28214071
Ni W, Zheng M, Xi G, Keep RF, Hua Y (2015) Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 35:1454–1461. https://doi.org/10.1038/jcbfm.2015.52
doi: 10.1038/jcbfm.2015.52
pubmed: 25853903
pmcid: 4640334
Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53:213–220. https://doi.org/10.1097/00005072-199405000-00001
doi: 10.1097/00005072-199405000-00001
pubmed: 8176405
Pak-Wittel MA, Yang L, Sojka DK, Rivenbark JG, Yokoyama WM (2013) Interferon-gamma mediates chemokine-dependent recruitment of natural killer cells during viral infection. Proc Natl Acad Sci U S A 110:E50–E59. https://doi.org/10.1073/pnas.1220456110
doi: 10.1073/pnas.1220456110
pubmed: 23248310
Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431. https://doi.org/10.1016/j.tins.2009.05.001
doi: 10.1016/j.tins.2009.05.001
pubmed: 19615761
Perez Bay AE, Schreiner R, Benedicto I, Paz Marzolo M, Banfelder J, Weinstein AM, Rodriguez-Boulan EJ (2016) The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells. Nat Commun 7:11550. https://doi.org/10.1038/ncomms11550
doi: 10.1038/ncomms11550
pubmed: 27180806
pmcid: 4873671
Pistritto G, Franzese O, Pozzoli G, Mancuso C, Tringali G, Preziosi P, Navarra P (1999) Bacterial lipopolysaccharide increases prostaglandin production by rat astrocytes via inducible cyclo-oxygenase: evidence for the involvement of nuclear factor kappaB. Biochem Biophys Res Commun 263:570–574. https://doi.org/10.1006/bbrc.1999.1413
doi: 10.1006/bbrc.1999.1413
pubmed: 10491333
Ranjbar Taklimie F, Gasterich N, Scheld M, Weiskirchen R, Beyer C, Clarner T, Zendedel A (2019) Hypoxia induces astrocyte-derived lipocalin-2 in ischemic stroke. Int J Mol Sci 20. https://doi.org/10.3390/ijms20061271
Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577. https://doi.org/10.1016/s0166-2236(97)01139-9
doi: 10.1016/s0166-2236(97)01139-9
pubmed: 9416670
Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439. https://doi.org/10.1038/nri2565
doi: 10.1038/nri2565
pubmed: 19461673
Russo MV, McGavern DB (2015) Immune surveillance of the CNS following infection and injury. Trends Immunol 36:637–650. https://doi.org/10.1016/j.it.2015.08.002
doi: 10.1016/j.it.2015.08.002
pubmed: 26431941
pmcid: 4592776
Smith ER, Zurakowski D, Saad A, Scott RM, Moses MA (2008) Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res 14:2378–2386. https://doi.org/10.1158/1078-0432.CCR-07-1253
doi: 10.1158/1078-0432.CCR-07-1253
pubmed: 18413828
Soni SS, Ronco C, Katz N, Cruz DN (2009) Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purif 28:165–174. https://doi.org/10.1159/000227785
doi: 10.1159/000227785
pubmed: 19590184
Spuch C, Navarro C (2010) Expression and functions of LRP-2 in central nervous system: progress in understanding its regulation and the potential use for treatment of neurodegenerative diseases. Immunol Endocr Metab Agents Med Chem Curr Med Chem 10:249–254
Suk K (2016) Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol 144:158–172. https://doi.org/10.1016/j.pneurobio.2016.08.001
doi: 10.1016/j.pneurobio.2016.08.001
pubmed: 27498195
van Neerven S, Nemes A, Imholz P, Regen T, Denecke B, Johann S, Beyer C, Hanisch UK, Mey J (2010) Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neuroimmunol 229:169–179. https://doi.org/10.1016/j.jneuroim.2010.08.005
doi: 10.1016/j.jneuroim.2010.08.005
pubmed: 20826012
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016
doi: 10.1152/physrev.00042.2016
pubmed: 29351512
Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci Off J Soc Neurosci 29:11511–11522. https://doi.org/10.1523/JNEUROSCI.1514-09.2009
doi: 10.1523/JNEUROSCI.1514-09.2009
Wang G, Weng YC, Han X, Whaley JD, McCrae KR, Chou WH (2015) Lipocalin-2 released in response to cerebral ischaemia mediates reperfusion injury in mice. J Cell Mol Med 19:1637–1645. https://doi.org/10.1111/jcmm.12538
doi: 10.1111/jcmm.12538
pubmed: 25702801
pmcid: 4511361
Xing C et al (2014) Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45:2085–2092. https://doi.org/10.1161/STROKEAHA.114.005733
doi: 10.1161/STROKEAHA.114.005733
pubmed: 24916903
pmcid: 4122238
Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A 106:3913–3918. https://doi.org/10.1073/pnas.0810617106
doi: 10.1073/pnas.0810617106
pubmed: 19237579
pmcid: 2656179
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410. https://doi.org/10.1523/jneurosci.6221-11.2012
doi: 10.1523/jneurosci.6221-11.2012
pubmed: 22553043
pmcid: 3480225