Sound Transmission Loss of a Sandwich Plate with Adjustable Core Layer Thickness.

composite materials compressible constrained layer damping morphing structure sandwich panel semi-active damping sound transmission loss

Journal

Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929

Informations de publication

Date de publication:
18 Sep 2020
Historique:
received: 27 08 2020
revised: 15 09 2020
accepted: 17 09 2020
entrez: 23 9 2020
pubmed: 24 9 2020
medline: 24 9 2020
Statut: epublish

Résumé

Compressible Constrained Layer Damping (CCLD) is a novel, semi-active, lightweight-compatible solution for vibration mitigation based on the well-known constrained layer damping principle. The sandwich-like CCLD set-up consists of a base structure, a constraining plate, and a compressible open-cell foam core in between, enabling the adjustment of the structure's vibration behaviour by changing the core compression using different actuation pressures. The aim of the contribution is to show to what degree, and in which frequency range the acoustic behaviour can be tuned using CCLD. Therefore, the sound transmission loss (TL), as an important vibro-acoustic index, is determined in an acoustic window test stand at different actuation pressures covering a frequency range from 0.5 to 5 kHz. The different actuation pressures applied cause a variation of the core layer thickness (from 0.9

Identifiants

pubmed: 32962152
pii: ma13184160
doi: 10.3390/ma13184160
pmc: PMC7560250
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : KO 4333/1-2

Auteurs

Tom Ehrig (T)

Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, 01069 Dresden, Germany.

Martin Dannemann (M)

Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, 01069 Dresden, Germany.

Ron Luft (R)

Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, 01069 Dresden, Germany.

Christian Adams (C)

Department of Mechanical Engineering, System Reliability, Adaptive Structures, and Machine Acoustics SAM, Technical University of Darmstadt, 64289 Darmstadt, Germany.

Niels Modler (N)

Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, 01069 Dresden, Germany.

Pawel Kostka (P)

Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, 01069 Dresden, Germany.

Classifications MeSH