Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain.
COVID-19
SARS-CoV-2
brain
coronavirus
neuroinvasion
respiratory center
Journal
Journal of medical virology
ISSN: 1096-9071
Titre abrégé: J Med Virol
Pays: United States
ID NLM: 7705876
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
24
07
2020
revised:
12
09
2020
accepted:
14
09
2020
pubmed:
24
9
2020
medline:
10
3
2021
entrez:
23
9
2020
Statut:
ppublish
Résumé
The recent outbreak of the novel coronavirus, SARS-CoV-2, has emerged to be highly pathogenic in nature. Although lungs are considered as the primary infected organs by SARS-CoV-2, some of the other organs, including the brain, have also been found to be affected. Here, we have discussed how SARS-CoV-2 might infect the brain. The infection of the respiratory center in the brainstem could be hypothesized to be responsible for the respiratory failure in many COVID-19 patients. The virus might gain entry through the olfactory bulb and invade various parts of the brain, including the brainstem. Alternatively, the entry might also occur from peripheral circulation into the central nervous system by compromising the blood-brain barrier. Finally, yet another possible entry route could be its dispersal from the lungs into the vagus nerve via the pulmonary stretch receptors, eventually reaching the brainstem. Therefore, screening neurological symptoms in COVID-19 patients, especially toward the breakdown of the respiratory center in the brainstem, might help us better understand this disease.
Substances chimiques
Cytokines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1296-1303Subventions
Organisme : SERB, India
ID : ECR/2017/000466
Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Ceccarelli M, Berretta M, Venanzi Rullo E, Nunnari G, Cacopardo B. Differences and similarities between Severe Acute Respiratory Syndrome (SARS)-CoronaVirus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci. 2020;24:2781-2783.
Lutz C, Maher L, Lee C, Kang W. COVID−19 preclinical models: human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics. 2020;14:20.
Garg RK. Spectrum of neurological manifestations in Covid-19: a review. Neurol India. 2020;68:560-572.
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA-J Am Med Assoc. 2020;323(11):1061-1069.
Li Z, Huang Y, Guo X. The brain, another potential target organ, needs early protection from SARS-CoV-2 neuroinvasion. Sci China Life Sci. 2020;63(5):771-773.
Mao L, Wang M, Chen S, et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a retrospective case series study. SSRN Electron J. 2020. https://doi.org/10.2139/ssrn.3544840
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690. https://doi.org/10.1001/jamaneurol.2020.1127
Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76(233):235.
Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med. 2020;382(20):e60.
Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke. Brain Behav Immun. 2020;87(115):119.
Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95(5):e601-e605.
Sadiq M, Aziz OA, Kazmi U, et al. Multisystem inflammatory syndrome associated with COVID-19 in children in Pakistan. Lancet Child Adolesc Heal. 2020;4:e36-e37 [Epub ahead of print]. https://doi.org/10.1016/S2352-4642(20)30256-X
Baig AB, Sanders EC. Potential Neuroinvasive Pathways of SARS-CoV-2: Deciphering the Spectrum of Neurological Deficit seen with Coronavirus Disease-2019 (COVID-19). J Med Virol. 2020. https://doi.org/10.1002/jmv.26105
Schultz BEW. The neurotropic viruses. Annu Rev Microbiol. 1948;2:335-338.
Giraudon P, Bernard A. Inflammation in neuroviral diseases. J Neural Transm. 2010;117:899-906.
Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74:8913-8921.
Ng Kee Kwong KC, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: a neurological perspective. J Clin Neurosci. 2020;77:13-16.
Rodriguez-Morales AJ, Bonilla-Aldana DK, Tiwari R, Sah R, Rabaan AA, Dhama K. COVID-19, an emerging coronavirus infection: current scenario and recent developments-an overview. J Pure Appl Microbiol. 2020;14:5-12.
Li Y, Bai W-Z, Hashikawa T. Response to Commentary on: “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020;Apr 10. https://doi.org/10.1002/jmv.25824
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem. 2008;107:1482-1494.
Nepal G, Rehrig JH, Shrestha GS, et al. Neurological manifestations of COVID-19: a systematic review. Crit Care. 2020;24:421.
Pouga L. Encephalitic syndrome and anosmia in COVID-19: Do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases. J Med Virol. 2020. https://doi.org/10.1002/jmv.26309
Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. 2020;194:105921.
Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther. 2020;26:499-501. https://doi.org/10.1111/cns.13372
Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-783. https://doi.org/10.1016/S1474-4422(20)30221-0
Xiang P, Xu XM, Gao LL, Wang HZ, Xiong HF, Li RH. First case of 2019 novel coronavirus disease with encephalitis. ChinaXiv. 2020;T202003:00015.
Mondolfi AP, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92:699-702.
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;296:201187. https://doi.org/10.1148/radiol.2020201187
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87(22):18. https://doi.org/10.1016/j.bbi.2020.03.031
Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18:1559-1561.
Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients-an MRI-based 3-month follow-up study . EClinicalMedicine. 2020;25:100484. https://doi.org/10.1016/j.eclinm.2020.100484
Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606.
Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020;10:806-813. https://doi.org/10.1002/alr.22579
Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020;26:1037-1040. https://doi.org/10.1038/s41591-020-0916-2
Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology. 2020. https://doi.org/10.1212/wnl.0000000000010116
Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19:383-384.
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host and Microbe. 2013;13:379-393.
Sungnak W, Huang N, HCA Lung Biological Network, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Med. 2020;26:681-687.
Berth SH, Leopold PL, Morfini G. Virus-induced neuronal dysfunction and degeneration. Front Biosci. 2009;14:5239-5259.
Haase AT. Pathogenesis of lentivirus infections. Nature. 1986;322:130-136.
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995-998. https://doi.org/10.1021/acschemneuro.0c00122
Miner JJ, Diamond MS. Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol. 2016;38:18-23.
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-555. https://doi.org/10.1002/jmv.25728
Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012;163:628-635.
Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza A virus in mice. Vet Pathol. 2004;41:101-107.
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 1 patients 2. Preprint from bioRxiv. 2020. https://doi.org/10.1101/2020.06.04.135012
Munster VJ, Prescott JB, Bushmaker T, et al. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep. 2012;2:736.
Bohmwald K, Gálvez NMS, Ríos M, Kalergis KM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386.
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264-7275.
Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12(1):14.
Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467-508.
Zhuanq Z, Zang N, Ye C, Xu F. Lethal avian influenza A (H5N1) virus replicates in pontomedullary chemosensitive neurons and depresses hypercapnic ventilatory response in mice. Am J Physiol Lung Cell Mol Physiol. 2019;316:L525-L536.
Machado C, Gutierrez JV. Brainstem dysfunctionin SARS-CoV-2 infection can be a potential cause of respiratory distress. Preprints. 2020. https://doi.org/10.20944/preprints202004.0330.v1
Chigr F, Merzouki M, Najimi M. Comment on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020;9:703-704.
Burgold T, Voituron N, Caganova M, et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2012;2:1244-1258.
Gandhi S, Srivastava AK, Ray U, Tripathi PP. Does collapse of respiratory center in the brain responsible for breakdown of COVID-19 patients? ACS Chem Neurosci. 2020;11(10):1379-1381. https://doi.org/10.1021/acschemneuro.0c00217
Nogués MA, Benarroch E. Abnormalities of respiratory control and the respiratory motor unit. Neurologist. 2008;14:273-288.
Stoeckel MC, Esser RW, Gamer M, Büchel C, Von Leupoldt A. Brain responses during the anticipation of dyspnea. Neural Plast. 2016;2016(3):1-10.
Coen M, Allali G, Adler D, Serratrice J. Hypoxemia in COVID-19, Comment on: “The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020;92(10). https://doi.org/10.1002/jmv.26020
Schön D, Rosenkranz M, Regelsberger J, et al. Reduced perception of dyspnea and pain after right insular cortex lesions. Am J Respir Crit Care Med. 2008;178:1173-1179.
Aghagoli G, Marin BG, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: risk factors, predictors, and complications: a review. J Card Surg. 2020;35(6):1302-1305. https://doi.org/10.1111/jocs.14538
Rovina N, Akinosoglou K, Eugen-Olsen J, Hayek S, Reiser J, Giamarellos-Bourboulis EJ. Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia. Crit Care. 2020;24:187.
Li Y, Fu L, Gonzales DM, Lavi E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J Virol. 2004;78:3398-3406.
Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua Shao Shang Za Zhi. 2020;36(6):471-475.
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033-1034.
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020;92:568-576. https://doi.org/10.1002/jmv.25748
Chung HY, Wickel J, Brunkhorst FM, Geis C. Sepsis-associated encephalopathy: from delirium to dementia? J Clin Med. 2020;9:703.