Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 09 2020
Historique:
received: 15 01 2020
accepted: 10 09 2020
entrez: 25 9 2020
pubmed: 26 9 2020
medline: 22 12 2020
Statut: epublish

Résumé

The majority of essential oils obtained from vascular plants have been demonstrated to be effective in treating fungal and bacterial infections. Among others, Salvia hydrangea is an endemic half-shrub belonging to the Lamiaceae family that has been widely used from ancient times in Iranian traditional medicine. The aim of this study was to compare the composition and antimicrobial properties of essential oils obtained from leaves or flowers of this plant, collected from the Daran region of Iran during June 2018. The oils were obtained using Clevenger apparatus, their composition was evaluated by means of gas chromatography/mass spectrometry (GC/MS) and the antimicrobial properties were assayed by measuring inhibition halos, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The yield of leaf oil was ~ 0.25% and that of flower oil was ~ 0.28%. Oil composition was affected by the part of the plants used: the most abundant bioactives contained in leaf essential oil were (+)-spathulenol (16.07%), 1,8-cineole (13.96%), trans-caryophyllene (9.58%), β-pinene (8.91%) and β-eudesmol (5.33%) and those in flower essential oil were caryophyllene oxide (35.47%), 1,8-cineole (9.54%), trans-caryophyllene (6.36%), β-eudesmol (4.11%), caryophyllenol-II (3.46%) and camphor (3.33%). Both the oils showed a significant inhibitory and lethal effect on the Gram-negative bacteria Pseudomonas aeruginosa (MIC ~ 16 µg/mL), Shigella dysenteriae and Klebsiella pneumoniae (MIC ~ 62 µg/mL). Therefore, the essential oils obtained from both leaves and flowers of S. hydrangea may have potential application as bactericidal agents against some bacteria.

Identifiants

pubmed: 32973295
doi: 10.1038/s41598-020-73193-y
pii: 10.1038/s41598-020-73193-y
pmc: PMC7519093
doi:

Substances chimiques

Anti-Infective Agents 0
Oils, Volatile 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15647

Références

Sharifi-Rad, J. et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 1, 70 (2017).
doi: 10.3390/molecules22010070
Rao, V. Phytochemicals A Global Perspective of Their Role in Nutrition and Health 548 (InTech, Croatia, 2012).
doi: 10.5772/1387
Omidbeigy, R. Approaches to the Production and Processing of Medicinal Plants Vol II 424 (Designers Publishing, Stockholm, 1995).
Miguel, M. G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 15, 9252–9287 (2010).
pubmed: 21160452 pmcid: 6259136 doi: 10.3390/molecules15129252
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. & De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 12, 1451–1474 (2013).
doi: 10.3390/ph6121451
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 3, 223–253 (2004).
doi: 10.1016/j.ijfoodmicro.2004.03.022
-Buchbauer, G., Jäger, W., Jirovetz, L., Ilmberger, J. & Dietrich, H. Therapeutic Properties of Essential Oils and Fragrances Vol 525, 159–165 (ACS Symposium Series, 1993).
Dagli, N., Dagli, R., Mahmoud, R. S. & Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent. 5, 335 (2015).
pubmed: 26539382 pmcid: 4606594 doi: 10.4103/2231-0762.165933
Edris, A. E. Pharmaceutical and therapeutic Potentials of essential oils and their individual volatile constituents: A review. Phyther. Res. 21, 308–323 (2007).
doi: 10.1002/ptr.2072
Abdollahi, A., Koohpayeh, S. A., Najafipoor, S., Mansoori, Y. & Abdollahi, S. Evaluation of drug resistance and Staphylococcal cassette chromosome (SCCmec) types among methicillin-resistant Staphylococcus aureus (MRSA). J. Alborz Health 1, 47–52 (2013).
Meshkibaf, M. H., Abdollahi, A., Fsihi Ramandi, M., Adnani Sadati, S. J. & Moravvej, A. Antibacterial effects of hydro-alcoholic extracts of Ziziphora tenuior, Teucrium polium, Berberis corcorde and Stachys inflata. Koomesh 4, 240–245 (2011).
Defera, D. J., Ziogas, B. N. & Polission, M. G. GC/MS analysis of essential oils from some Greek aromatic plants and their fungitoxity on Penicillum digitatum. J. Agric. Food Chem. 48, 2576–2581 (2000).
doi: 10.1021/jf990835x
Kordali, S. et al. Determination of the chemical composition and antioxidant activity of the EO of Artemisia dracunculus and the antifungal and antibacterial activities of Artemisia absinthium and Artemisia spicigera essential oils. J. Agric. Food Chem. 53, 9452–9458 (2005).
pubmed: 16302761 doi: 10.1021/jf0516538
Khorshidian, N., Yousefi, M., Khanniri, E. & Mortazavian, A. M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Merg. Technol. 45, 62–72 (2018).
doi: 10.1016/j.ifset.2017.09.020
Cantino, P. D., Harley, R. M. & Wagstaff, S. J. Genera of Labiatae: Status and classification. In Advances in Labiate Science (eds Harley, R. M. & Reynolds, T.) 511–522 (Royal Botanic Gardens, Kew, 1992).
Cantino, P. D., Olmstead, R. G. & Wagstaff, S. J. A comparison of phylogenetic nomenclature with the current system: A botanical case study. Syst. Biol. 46, 313–331 (1997).
doi: 10.1093/sysbio/46.2.313
Kadereit, J. W. The Families and Genera of Vascular Plants Vol 7 1–219 (Lamiales, Berlin, 2004).
Bendiksby, M., Thorbek, L., Scheen, A. C., Lindqvist, C. & Ryding, O. An updated phylogeny and classification of Lamiaceae subfamily Lamioideae. Taxon 2, 471–484 (2011).
doi: 10.1002/tax.602015
Baghalian, K. & Naghdibadi, H. Essential Plants 1st edn. (Anders Publishing, New York, 2000).
Hedge, I. C. Notes on some cultivated species of Salvia. J. R. Hortic. Soc. 85, 451–545 (1960).
Mozaffarian, V. A Dictionary of Iranian Plant Names 594 (Farhang Moaser Press, Tehran, 1996).
Zargari, A. Medicinal Plants 7th edn, 121 (Tehran University Publication, Tehran, 2012).
Shirota, O., Nagamatsu, K. & Sekita, S. Neoclerodane diterpenes from the hallucinogenic Sage Salvia divinorum. J. Nat. Prod. 69, 1782–1786 (2006).
pubmed: 17190459 doi: 10.1021/np060456f
Lakušić, B. S., Ristić, M. S., Slavkovska, V. N., Stojanović, D. L. & Lakušić, D. V. Variations in EO yields and compositions of Salvia officinalis (Lamiaceae) at different developmental stages. Bot. Serbica 2, 127–139 (2013).
Lambert Ortiz, E. Encyclopedia of Herbs, Spices and Flavouring (Dorling Kinderslei, London, 1996).
Demirci, B., Baser, K. H. C., Yildiz, B. & Bahcecioglu, Z. Composition of essential oils of six endemic Salvia spp. from Turkey. Flav. Frag J. 18, 116–121 (2003).
doi: 10.1002/ffj.1173
Barazandeh, M. Volatile constituents of the oil of Salvia hydrangea DC. ex Benth. from Iran. J. Essent. Oil Res. 16, 1–20 (2004).
doi: 10.1080/10412905.2004.9698634
Sonboli, A., Kanani, M., Yousefzadi, M. & Mojarad, M. Chemical composition and antibacterial activity of the EO of Salvia hydrangea from two localities of Iran. Iran. J. Med. Plants 2, 20–2837 (2009).
Ebrahimi, M. & Ranjbar, S. Essential oils of Salvia hydrangea DC. ex Benth. from Kiasar-Hezarjarib regions, Iran-impact of environmental factors as quality determinants. J. Med. Plants. By-prodt. 2, 159–167 (2016).
Kotan, R. et al. Antimicrobial and insecticidal activities of EO isolated from Turkish Salvia hydrangea. Biochem. Syst. Ecol. 36, 360–368 (2008).
doi: 10.1016/j.bse.2007.12.003
Mahdiyan, F., Ghasemi Pirbalouti, A. & Malekpoor, F. Qualitative and quantitative changes in the EO of sage (Salvia hydrangea DC. Ex Benth.) as affected by different drying methods. J. Herbal Drug 4, 269–274 (2016).
Ghannadi, A., Samsam-Shariat, H. & Moattar, F. Composition of the leaf oil of Salvia hydrangeaDC. ex Benth. grown in Iran preview access options. J. Essential Oil Res. 11, 745–746 (1999).
doi: 10.1080/10412905.1999.9712010
Sairafianpour, M. et al. Terpenoids of Salvia hydrangea: Two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membrane. Planta Med. 69, 846 (2003).
pubmed: 14598212 doi: 10.1055/s-2003-43212
Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Quadruple Mass Spectroscopy 804 (Allured Publishing Cropration, Carol Stream, 2007).
Zargoosh, Z., Ghavam, M., Bacchetta, G. & Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss.. Sci. Rep. 9, 16021 (2019).
pubmed: 31690810 pmcid: 6831573 doi: 10.1038/s41598-019-52605-8
Moradi, H., Ghavam, M. & Tavili, A. Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotech. Rep. 25, 00408 (2020).
Yavari, A. R., Nazeri, V., Sefidkon, F. & Hassani, M. E. Evaluation of some ecological factors, morphological traits and EO productivity of Thymus migricus Klokov & Desj-Shost. Iran. J. Med. Aro Plants 2, 227–238 (2010).
Omidbeigy, R. Production and Processing of Medicinal Plants Vol 1 347 (Behnashr Publication, Mashhad, 2005).
Asadollahi, M., Firuzi, O., Heidary Jamebozorgi, F., Alizadeh, M. & Jassbi, A. R. Ethnopharmacological studies, chemical composition, antibacterial and cytotoxic activities of essential oils of eleven Salvia in Iran. J. Herbal Med. 20, 100–250 (2018).
Millauskas, G., Venskutonis, P. R. & Van Beek, T. A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85, 231–237 (2004).
doi: 10.1016/j.foodchem.2003.05.007
Taherkhani, M., Masoudi, Sh., Fatah Elahi, R., Baradari, T. & Rustayian, A. Identify the compounds in the essential oils of two plants from the Apiaceae family, Reichenb Torilis leptophylla and Boiss Thecocarpus meifolius, and study their antibacterial properties. Iran. J. Chem. Chem. Eng. 31, 70–65 (2012).
Jaimand, K. & Rezaei, MB. Essential Oil, Distillers, Test Methods and Inhibition Index in EO Analysis. First Edition. 350 (Publication of the Medicinal Plants Association, 2006).
Francisco, J. C. & Sivik, B. Solubility of three monoterpenes, their mixtures and eucalyptus leaf oils in dense carbon dioxide. J. Super Fluid. 23, 11–19 (2002).
doi: 10.1016/S0896-8446(01)00131-0
Boland, D. J., Brophy, J. J. & House, A. P. Eucalyptus Leaf Oil Use Chemistry, Distillation and Marketing 252 (Inkatta Press, Melbourne, 1991).
Kusuma, I. W., Ogawa, T., Itoh, K. & Tachibana, S. Isolation and identification of an antifungal sesquiterpene alcohol from Amboyna wood. Pak. J. Biol. Sci. 7, 1735–1740 (2004).
doi: 10.3923/pjbs.2004.1735.1740
Ding, H. Y., Wu, Y. C. & Lin, H. C. Phytochemical and pharmacological studies on Chinese changzhu. J. Chin. Chem. Soc. 47, 561–566 (2000).
doi: 10.1002/jccs.200000075
Marinho, C. G. S., Della Lucia, T. M. C., Guedes, R. N. C., Ribeiro, M. M. R. & Lima, E. R. β-eudesmol-induced aggression in the leaf-cutting ant Atta sexdens rubropilosa. Entomol. Exp. Appl. 117, 89–93 (2005).
doi: 10.1111/j.1570-7458.2005.00338.x
Hasani, J. & NikBaher, Z. Evaluation of ecological needs different species of thyme in Kurdistan Habitats. Echo J. Medil Plant. 1, 22–342014 (2014).
Majruhi, A. A. Study of variation in quantity and quality of the EO of Zhumeria majdae Rech. F. at different growth stages. J. Med. Plants. 29, 107–113 (2008).
Majdjabari, T., Rustaiyan, A. & Vatanpuor, H. Study the ingredients of in essential oil. Tanacetum khorassanicum (Krasch). Parsat. J. Med. Plants. 6, 15–20 (2003).
Manconi, M. et al. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf. B Biointerfaces 171, 115–122 (2018).
pubmed: 30025373 doi: 10.1016/j.colsurfb.2018.07.021
Baptista-Silva, S., Borges, S., Ramos, O. L., Pintado, M. & Bruno, S. The progress of essential oils as potential therapeutic agents: A review. J. Essential Oil Res. 4, 279–295 (2020).
doi: 10.1080/10412905.2020.1746698
Mohammadi, N., Ghasemi, A., Aghabarari, B. & Hamehi, B. EOmixtures, anti-bacterial and antioxidant activity of EO of Nigella sativa L. different ecotypes in different habitats Iran. Ecol. Chem. J. Med Plants 4, 58–68 (2016).
Dhar, P. et al. Synthesis, antimicrobial evaluation, and structure activity relationship of α-pinene derivatives. J. Agric. Food Chem. 16, 3548–3552 (2014).
doi: 10.1021/jf403586t
Gilsic, S., Milojeij, S., Dimitrjvi, J., Orlovij, A. & Skala, D. Antimicrobial activity of the EO and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J. Serb. Chem. Soc. 4, 311–320 (2007).
doi: 10.2298/JSC0704311G
Leite, A. M. et al. Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciên Farma 43, 121–126 (2007).
Elshafie, H. S., Ghanney, N., Mang, S. M., Ferchichi, A. & Camele, I. An in Vitro attempt for controlling severe phytopathogens and human pathogens using essential oils from Mediterranean plants of genus Schinus. J. Med. Food. 3, 1–8 (2016).
Vikram, A., Tripathi, D. N., Ramarao, P. & Jena, G. B. Evaluation of streptozotocin genotoxicity in rats from different ages using the micronucleus assay. Regul. Toxicol. Pharmacol. 49, 238–244 (2007).
pubmed: 17980470 doi: 10.1016/j.yrtph.2007.09.006
Moshefim, M. H., Mehrabini, M. & Zolhasb, H. Investigating the antimicrobial effects of Iranian sage and Azerbaijani sage extracts on six Gram-positive and Gram-negative microbial strains. J. Kerman Uni. Med. Sci. 2, 109–118 (2004).
Tajkarimi, M. M., Ibrahim, S. A. & Cliver, D. O. Antimicrobial herb and spice compounds in food. Food Control 21, 1199–1218 (2010).
doi: 10.1016/j.foodcont.2010.02.003
Sharifi-Rad, M. et al. Salvia spp. Plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci. Technol. 80, 242–263 (2018).
doi: 10.1016/j.tifs.2018.08.008
Norouzi-Arasi, H. et al. Volatile constituents and antimicrobial activities of Salvia suffruticosa Montbr. & Auch. ex Benth. from Iran. Flavour Fragr. J. 20, 633–636 (2005).
doi: 10.1002/ffj.1514
Tepe, B., Donmez, E. & Unlu, M. Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha and Salvia multiculis. J. Food Chem. 84, 519–525 (2004).
doi: 10.1016/S0308-8146(03)00267-X
Lopes-Lutz, D., Alviano, D. S., Alviano, C. S. & Kolodziejcyk, P. P. The cardiovascular actions of the volatile oil of the black seed (Nigella sativa) in rats: Elucidation of the mechanism of action. Gene Pharm. 24, 1123–1131 (2008).
Salem, N. et al. Variation in chemical composition of Eucalyptus globulus EO under phonological stages and evidence synergism with antimicrobial standards. Ind. Crops Prod. 124, 115–125 (2018).
doi: 10.1016/j.indcrop.2018.07.051
Usach, I. et al. Comparison between citral and pompia essential oil loaded in phospholipid vesicles for the treatment of skin and mucosal infections. Nanomat (Basel Switzerland) 2, 286 (2020).
doi: 10.3390/nano10020286

Auteurs

Mansureh Ghavam (M)

Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran. mghavam@kashanu.ac.ir.

Maria Letizia Manca (ML)

Department Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.

Maria Manconi (M)

Department Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.

Gianluigi Bacchetta (G)

Department Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
Hortus Botanicus Karalitanus (HBK), University of Cagliari, Cagliari, Italy.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH