An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
10 2020
Historique:
received: 01 06 2019
accepted: 20 08 2020
pubmed: 30 9 2020
medline: 25 11 2020
entrez: 29 9 2020
Statut: ppublish

Résumé

Protein aggregation is the hallmark of neurodegeneration, but the molecular mechanisms underlying late-onset Alzheimer's disease (AD) are unclear. Here we integrated transcriptomic, proteomic and epigenomic analyses of postmortem human brains to identify molecular pathways involved in AD. RNA sequencing analysis revealed upregulation of transcription- and chromatin-related genes, including the histone acetyltransferases for H3K27ac and H3K9ac. An unbiased proteomic screening singled out H3K27ac and H3K9ac as the main enrichments specific to AD. In turn, epigenomic profiling revealed gains in the histone H3 modifications H3K27ac and H3K9ac linked to transcription, chromatin and disease pathways in AD. Increasing genome-wide H3K27ac and H3K9ac in a fly model of AD exacerbated amyloid-β42-driven neurodegeneration. Together, these findings suggest that AD involves a reconfiguration of the epigenome, wherein H3K27ac and H3K9ac affect disease pathways by dysregulating transcription- and chromatin-gene feedback loops. The identification of this process highlights potential epigenetic strategies for early-stage disease treatment.

Identifiants

pubmed: 32989324
doi: 10.1038/s41588-020-0696-0
pii: 10.1038/s41588-020-0696-0
pmc: PMC8098004
mid: NIHMS1622396
doi:

Substances chimiques

Amyloid beta-Peptides 0
Chromatin 0
Histones 0
Peptide Fragments 0
Proteome 0
amyloid beta-protein (1-42) 0
Histone Acetyltransferases EC 2.3.1.48

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1024-1035

Subventions

Organisme : NIA NIH HHS
ID : P30 AG010124
Pays : United States
Organisme : NIA NIH HHS
ID : U54 AG052427
Pays : United States
Organisme : NIA NIH HHS
ID : T32 AG000255
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA196539
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG031862
Pays : United States
Organisme : NIA NIH HHS
ID : U24 AG041689
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI118891
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS111997
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS097275
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG006827
Pays : United States

Commentaires et corrections

Type : ErratumIn

Références

World Alzheimer Report 2015 (Alzheimer’s Disease International, 2015); https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
Van Cauwenberghe, C., Van Broeckhoven, C. & Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18, 421–430 (2016).
pubmed: 26312828 doi: 10.1038/gim.2015.117
Cummings, J. Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin. Transl. Sci. 11, 147–152 (2018).
pubmed: 28767185 doi: 10.1111/cts.12491
Mehta, D., Jackson, R., Paul, G., Shi, J. & Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opin. Investig. Drugs 26, 735–739 (2017).
pubmed: 28460541 pmcid: 5576861 doi: 10.1080/13543784.2017.1323868
Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).
pubmed: 27518561 pmcid: 5821249 doi: 10.1016/j.cell.2016.07.050
Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).
pubmed: 26373265 pmcid: 4736728 doi: 10.1038/nrm4048
Berson, A., Nativio, R., Berger, S. L. & Bonini, N. M. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 41, 587–598 (2018).
pubmed: 29885742 pmcid: 6174532 doi: 10.1016/j.tins.2018.05.005
Gräff, J. & Tsai, L.-H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013).
pubmed: 23324667 doi: 10.1038/nrn3427
Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369 (2015).
pubmed: 25693568 pmcid: 4530583 doi: 10.1038/nature14252
Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).
pubmed: 24464041 pmcid: 4012297 doi: 10.1038/nn.3639
Gräff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).
pubmed: 22388814 pmcid: 3498952 doi: 10.1038/nature10849
Xu, K., Dai, X.-L., Huang, H.-C. & Jiang, Z.-F. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid. Med. Cell. Longev. 2011, 143269 (2011).
pubmed: 21941604 pmcid: 3177096 doi: 10.1155/2011/143269
Anand, R., Gill, K. D. & Mahdi, A. A. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76, 27–50 (2014).
pubmed: 23891641 doi: 10.1016/j.neuropharm.2013.07.004
Lu, T. et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454 (2014).
pubmed: 24670762 pmcid: 4110979 doi: 10.1038/nature13163
Ben-Hattar, J. & Jiricny, J. Methylation of single CpG dinucleotides within a promoter element of the Herpes simplex virus tk gene reduces its transcription in vivo. Gene 65, 219–227 (1988).
pubmed: 2842233 doi: 10.1016/0378-1119(88)90458-1
De Jager, P. L. et al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156–1163 (2014).
pubmed: 25129075 pmcid: 4292795 doi: 10.1038/nn.3786
Lunnon, K. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat. Neurosci. 17, 1164–1170 (2014).
pubmed: 25129077 pmcid: 4410018 doi: 10.1038/nn.3782
Nativio, R. et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat. Neurosci. 21, 497–505 (2018).
pubmed: 29507413 pmcid: 6124498 doi: 10.1038/s41593-018-0101-9
Marzi, S. J. et al. A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat. Neurosci. 21, 1618–1627 (2018).
pubmed: 30349106 doi: 10.1038/s41593-018-0253-7
Klein, H.-U. et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 22, 37–46 (2019).
pubmed: 30559478 doi: 10.1038/s41593-018-0291-1
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 doi: 10.1038/nprot.2008.211
Perez Ortiz, J. M. & Swerdlow, R. H. Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 176, 3489–3507 (2019).
pubmed: 30675901 pmcid: 6715612 doi: 10.1111/bph.14585
Swerdlow, R. H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis. 62, 1403–1416 (2018).
pubmed: 29036828 pmcid: 5869994 doi: 10.3233/JAD-170585
Chien, H.-C. et al. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage. PLoS ONE 7, e47481 (2012).
pubmed: 23071813 pmcid: 3468564 doi: 10.1371/journal.pone.0047481
Vincent-Fabert, C. et al. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression. Blood 127, 1881–1885 (2016).
pubmed: 26941402 doi: 10.1182/blood-2015-09-666974
Nagy, Z., Esiri, M. M. & Smith, A. D. The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 87, 731–739 (1998).
pubmed: 9759963 doi: 10.1016/S0306-4522(98)00293-0
Meikrantz, W. & Schlegel, R. Apoptosis and the cell cycle. J. Cell. Biochem. 58, 160–174 (1995).
pubmed: 7673324 doi: 10.1002/jcb.240580205
Piu, F., Aronheim, A., Katz, S. & Karin, M. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol. Cell. Biol. 21, 3012–3024 (2001).
pubmed: 11287607 pmcid: 86930 doi: 10.1128/MCB.21.9.3012-3024.2001
Zhang, P. et al. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6, 1110–1121 (2014).
pubmed: 24613356 doi: 10.1016/j.celrep.2014.02.011
Wethkamp, N. & Klempnauer, K.-H. Daxx is a transcriptional repressor of CCAAT/enhancer-binding protein β. J. Biol. Chem. 284, 28783–28794 (2009).
pubmed: 19690170 pmcid: 2781424 doi: 10.1074/jbc.M109.041186
Yang, X., Khosravi-Far, R., Chang, H. Y. & Baltimore, D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067–1076 (1997).
pubmed: 9215629 pmcid: 2989411 doi: 10.1016/S0092-8674(00)80294-9
Tate, C. M., Lee, J.-H. & Skalnik, D. G. CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J. 277, 210–223 (2010).
pubmed: 19951360 doi: 10.1111/j.1742-4658.2009.07475.x
Chang, B., Chen, Y., Zhao, Y. & Bruick, R. K. JMJD6 is a histone arginine demethylase. Science 318, 444–447 (2007).
pubmed: 17947579 doi: 10.1126/science.1145801
Anderson, K. W. et al. Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain. PLoS ONE 10, e0126592 (2015).
pubmed: 25962138 pmcid: 4427357 doi: 10.1371/journal.pone.0126592
Shen, X., Chen, J., Li, J., Kofler, J. & Herrup, K. Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro 3, ENEURO.0124-15.2016 (2016).
pubmed: 27022623 pmcid: 4770009 doi: 10.1523/ENEURO.0124-15.2016
Wu, Y. et al. Aberrant expression of histone deacetylases 4 in cognitive disorders: molecular mechanisms and a potential target. Front. Mol. Neurosci. 9, 114 (2016).
pubmed: 27847464 pmcid: 5088184
Lau, P. et al. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol. Med. 5, 1613–1634 (2013).
pubmed: 24014289 pmcid: 3799583 doi: 10.1002/emmm.201201974
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
pubmed: 30476243 doi: 10.1093/nar/gky1131
Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).
pubmed: 7630403 doi: 10.1038/376348a0
Roelfsema, J. H. et al. Genetic heterogeneity in Rubinstein–Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am. J. Hum. Genet. 76, 572–580 (2005).
pubmed: 15706485 pmcid: 1199295 doi: 10.1086/429130
Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).
pubmed: 21131905 doi: 10.1038/emboj.2010.318
Koutelou, E., Hirsch, C. L. & Dent, S. Y. R. Multiple faces of the SAGA complex. Curr. Opin. Cell Biol. 22, 374–382 (2010).
pubmed: 20363118 pmcid: 2900470 doi: 10.1016/j.ceb.2010.03.005
Spedale, G., Timmers, H. T. & Pijnappel, W. W. M. ATAC-king the complexity of SAGA during evolution. Genes Dev. 26, 527–541 (2012).
pubmed: 22426530 pmcid: 3315114 doi: 10.1101/gad.184705.111
Allen, M. et al. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases. Sci. Data 3, 160089 (2016).
pubmed: 27727239 pmcid: 5058336 doi: 10.1038/sdata.2016.89
Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. Data 5, 180185 (2018).
pubmed: 30204156 pmcid: 6132187 doi: 10.1038/sdata.2018.185
Yuan, Z.-F. et al. EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data. J. Proteome Res. 17, 2533–2541 (2018).
pubmed: 29790754 pmcid: 6387837 doi: 10.1021/acs.jproteome.8b00133
Wagner, E. J. & Carpenter, P. B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115–126 (2012).
pubmed: 22266761 pmcid: 3969746 doi: 10.1038/nrm3274
Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).
pubmed: 16261189 doi: 10.1038/nrm1761
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).
pubmed: 18552846 pmcid: 2769248 doi: 10.1038/ng.154
Kuo, A. J. et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature 484, 115–119 (2012).
pubmed: 22398447 pmcid: 3321094 doi: 10.1038/nature10956
Kaimori, J.-Y. et al. Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci. Rep. 6, 24318 (2016).
pubmed: 27064113 pmcid: 4827026 doi: 10.1038/srep24318
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).
pubmed: 21106759 doi: 10.1073/pnas.1016071107 pmcid: 3003124
Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).
pubmed: 23473601 doi: 10.1016/j.molcel.2013.01.038
Guillemette, B. et al. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet. 7, e1001354 (2011).
pubmed: 21483810 pmcid: 3069113 doi: 10.1371/journal.pgen.1001354
Xhemalce, B. & Kouzarides, T. A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes Dev. 24, 647–652 (2010).
pubmed: 20299449 pmcid: 2849121 doi: 10.1101/gad.1881710
Wu, R. S., Tsai, S. & Bonner, W. M. Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell 31, 367–374 (1982).
pubmed: 7159927 doi: 10.1016/0092-8674(82)90130-1
Wu, R. S. & Bonner, W. M. Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell 27, 321–330 (1981).
pubmed: 7199388 doi: 10.1016/0092-8674(81)90415-3
Gabrielli, F. et al. Histone complements of human tissues, carcinomas, and carcinoma-derived cell lines. Mol. Cell. Biochem. 65, 57–66 (1984).
pubmed: 6542967 doi: 10.1007/BF00226019
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).
pubmed: 17277777 doi: 10.1038/ng1966
Pradeepa, M. M. et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681–686 (2016).
pubmed: 27089178 pmcid: 4886833 doi: 10.1038/ng.3550
Han, D. et al. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol. Cell 63, 711–719 (2016).
pubmed: 27477909 pmcid: 4992443 doi: 10.1016/j.molcel.2016.06.028
Sun, W., Zang, L., Shu, Q. & Li, X. From development to diseases: the role of 5hmC in brain. Genomics 104, 347–351 (2014).
pubmed: 25205306 doi: 10.1016/j.ygeno.2014.08.021
Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S. & Jacobsen, S. E. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54 (2011).
pubmed: 21689397 pmcid: 3218842 doi: 10.1186/gb-2011-12-6-r54
Tropberger, P. et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152, 859–872 (2013).
pubmed: 23415232 doi: 10.1016/j.cell.2013.01.032
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).
pubmed: 16960575
De Ferrari, G. V. et al. Wnt/β-catenin signaling in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 13, 745–754 (2014).
pubmed: 24365184 doi: 10.2174/1871527312666131223113900
Boonen, R. A. C. M., van Tijn, P. & Zivkovic, D. Wnt signaling in Alzheimer’s disease: up or down, that is the question. Ageing Res. Rev. 8, 71–82 (2009).
pubmed: 19101658 doi: 10.1016/j.arr.2008.11.003
Banzhaf-Strathmann, J. et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J. 33, 1667–1680 (2014).
pubmed: 25001178 pmcid: 4194100 doi: 10.15252/embj.201387576
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Satoh, J.-I., Kawana, N. & Yamamoto, Y. Pathway analysis of ChIP–seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Syst. Bio. 7, 139–152 (2013).
pubmed: 24250222 pmcid: 3825669
Lee, C. S. et al. Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc. Natl Acad. Sci. USA 108, 8408–8413 (2011).
pubmed: 21536885 doi: 10.1073/pnas.1019209108 pmcid: 3100960
Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5, e1000739 (2009).
pubmed: 19956766 pmcid: 2776306 doi: 10.1371/journal.pgen.1000739
Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).
pubmed: 19563753 pmcid: 3040116 doi: 10.1016/j.cell.2009.06.001
Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20 (2002).
pubmed: 11823794 doi: 10.1038/nrm714
Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).
pubmed: 7971984 doi: 10.1073/pnas.91.23.10918 pmcid: 45137
Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994).
pubmed: 7969153 pmcid: 359355
Mitxelena, J. et al. An E2F7-dependent transcriptional program modulates DNA damage repair and genomic stability. Nucleic Acids Res. 46, 4546–4559 (2018).
pubmed: 29590434 pmcid: 5961008 doi: 10.1093/nar/gky218
de Bruin, A. et al. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049 (2003).
pubmed: 12893818 doi: 10.1074/jbc.M308105200
Liu, B., Shats, I., Angus, S. P., Gatza, M. L. & Nevins, J. R. Interaction of E2F7 transcription factor with E2F1 and C-terminal-binding protein (CtBP) provides a mechanism for E2F7-dependent transcription repression. J. Biol. Chem. 288, 24581–24589 (2013).
pubmed: 23853115 pmcid: 3750156 doi: 10.1074/jbc.M113.467506
Zhang, S. & Cui, W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6, 305–311 (2014).
pubmed: 25126380 pmcid: 4131272 doi: 10.4252/wjsc.v6.i3.305
Vaeth, M. & Feske, S. NFAT control of immune function: new frontiers for an abiding trooper. F1000Res. 7, 260 (2018).
pubmed: 29568499 pmcid: 5840618 doi: 10.12688/f1000research.13426.1
Lee, Y.-F. et al. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am. J. Physiol. Endocrinol. Metab. 301, E91–E98 (2011).
pubmed: 21521714 pmcid: 3129845 doi: 10.1152/ajpendo.00701.2010
Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).
pubmed: 24162737 pmcid: 3896259 doi: 10.1038/ng.2802
Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).
pubmed: 30820047 pmcid: 6463297 doi: 10.1038/s41588-019-0358-2
Lee, P. H., O’Dushlaine, C., Thomas, B. & Purcell, S. M. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–1799 (2012).
pubmed: 22513993 pmcid: 3381960 doi: 10.1093/bioinformatics/bts191
Nica, A. C. & Dermitzakis, E. T. Expression quantitative trait loci: present and future. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368, 20120362 (2013).
doi: 10.1098/rstb.2012.0362
Zou, F. et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 8, e1002707 (2012).
pubmed: 22685416 pmcid: 3369937 doi: 10.1371/journal.pgen.1002707
Casas-Tinto, S. et al. The ER stress factor XBP1s prevents amyloid-β neurotoxicity. Hum. Mol. Genet. 20, 2144–2160 (2011).
pubmed: 21389082 pmcid: 3090193 doi: 10.1093/hmg/ddr100
Cutler, T. et al. Drosophila eye model to study neuroprotective role of CREB binding protein (CBP) in Alzheimer’s disease. PLoS ONE 10, e0137691 (2015).
pubmed: 26367392 pmcid: 4569556 doi: 10.1371/journal.pone.0137691
Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000).
pubmed: 10716917 pmcid: 305658 doi: 10.1093/emboj/19.6.1176
Herz, H.-M. et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345, 1065–1070 (2014).
pubmed: 25170156 pmcid: 4508193 doi: 10.1126/science.1255104
Tie, F. et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136, 3131–3141 (2009).
pubmed: 19700617 pmcid: 2730368 doi: 10.1242/dev.037127
Dai, J. et al. Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 134, 1066–1078 (2008).
pubmed: 18805098 pmcid: 2701395 doi: 10.1016/j.cell.2008.07.019
Korzus, E., Rosenfeld, M. G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961–972 (2004).
pubmed: 15207240 doi: 10.1016/j.neuron.2004.06.002 pmcid: 8048715
Caccamo, A., Maldonado, M. A., Bokov, A. F., Majumder, S. & Oddo, S. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 107, 22687–22692 (2010).
pubmed: 21149712 doi: 10.1073/pnas.1012851108 pmcid: 3012497
Zhang, M. et al. Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling. PLoS Biol. 7, e1000245 (2009).
pubmed: 19924292 pmcid: 2774267 doi: 10.1371/journal.pbio.1000245
Min, S.-W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).
pubmed: 20869593 pmcid: 3035103 doi: 10.1016/j.neuron.2010.08.044
Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244.e12 (2018).
pubmed: 29804834 pmcid: 6078418 doi: 10.1016/j.cell.2018.04.033
Toledo, J. B. et al. A platform for discovery: the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Alzheimers Dement. 10, 477–484.e1 (2014).
pubmed: 23978324 doi: 10.1016/j.jalz.2013.06.003
Mirra, S. S. The CERAD neuropathology protocol and consensus recommendations for the postmortem diagnosis of Alzheimer’s disease: a commentary. Neurobiol. Aging 18, S91–S94 (1997).
pubmed: 9330994 doi: 10.1016/S0197-4580(97)00058-4
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).
pubmed: 16906426 pmcid: 3906709 doi: 10.1007/s00401-006-0127-z
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).
pubmed: 25150836 pmcid: 4404308 doi: 10.1038/nbt.2931
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W. & Landfield, P. W. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease. J. Chem. Neuroanat. 42, 118–126 (2011).
pubmed: 21756998 pmcid: 3163806 doi: 10.1016/j.jchemneu.2011.06.007
Sidoli, S., Bhanu, N. V., Karch, K. R., Wang, X. & Garcia, B. A. Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J. Vis. Exp. 17, 54112 (2016).
Sidoli, S., Simithy, J., Karch, K. R., Kulej, K. & Garcia, B. A. Low resolution data-independent acquisition in an LTQ-Orbitrap allows for simplified and fully untargeted analysis of histone modifications. Anal. Chem. 87, 11448–11454 (2015).
pubmed: 26505526 pmcid: 4811372 doi: 10.1021/acs.analchem.5b03009
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).
pubmed: 18555785 doi: 10.1016/j.cell.2008.04.043
Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).
pubmed: 22031440 pmcid: 3566780 doi: 10.1038/nature10523
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
pubmed: 12045153 pmcid: 186604 doi: 10.1101/gr.229102
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Moreno-Jiménez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).
pubmed: 30911133 doi: 10.1038/s41591-019-0375-9

Auteurs

Raffaella Nativio (R)

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Yemin Lan (Y)

Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Greg Donahue (G)

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Simone Sidoli (S)

Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.

Amit Berson (A)

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.

Ananth R Srinivasan (AR)

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.

Oksana Shcherbakova (O)

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.

Alexandre Amlie-Wolf (A)

Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Ji Nie (J)

Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.

Xiaolong Cui (X)

Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.

Chuan He (C)

Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.

Li-San Wang (LS)

Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Benjamin A Garcia (BA)

Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

John Q Trojanowski (JQ)

Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Nancy M Bonini (NM)

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. nbonini@sas.upenn.edu.

Shelley L Berger (SL)

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. bergers@pennmedicine.upenn.edu.
Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. bergers@pennmedicine.upenn.edu.
Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. bergers@pennmedicine.upenn.edu.
Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. bergers@pennmedicine.upenn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH