Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 09 2020
Historique:
received: 09 02 2020
accepted: 05 05 2020
entrez: 30 9 2020
pubmed: 1 10 2020
medline: 5 1 2021
Statut: epublish

Résumé

Mutations of cilia-associated molecules cause multiple developmental defects that are collectively termed ciliopathies. However, several ciliary proteins, involved in gating access to the cilium, also assume localizations at other cellular sites including the nucleus, where they participate in DNA damage responses to maintain tissue integrity. Molecular insight into how these molecules execute such diverse functions remains limited. A mass spectrometry screen for ANKS6-interacting proteins suggested an involvement of ANKS6 in RNA processing and/or binding. Comparing the RNA-binding properties of the known RNA-binding protein BICC1 with the three ankyrin-repeat proteins ANKS3, ANKS6 (NPHP16) and INVERSIN (NPHP2) confirmed that certain nephronophthisis (NPH) family members can interact with RNA molecules. We also observed that BICC1 and INVERSIN associate with stress granules in response to translational inhibition. Furthermore, BICC1 recruits ANKS3 and ANKS6 into TIA-1-positive stress granules after exposure to hippuristanol. Our findings uncover a novel function of NPH family members, and provide further evidence that NPH family members together with BICC1 are involved in stress responses to maintain tissue and organ integrity.

Identifiants

pubmed: 32994509
doi: 10.1038/s41598-020-72905-8
pii: 10.1038/s41598-020-72905-8
pmc: PMC7524721
doi:

Substances chimiques

ANKS3 protein, human 0
ANKS6 protein, human 0
Bicc1 protein, human 0
Carrier Proteins 0
INVS protein, human 0
Nuclear Proteins 0
RNA-Binding Proteins 0
Sterols 0
Transcription Factors 0
hippuristanol 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

15954

Références

Wolf, M. T. Nephronophthisis and related syndromes. Curr Opin Pediatr 27, 201–211. https://doi.org/10.1097/MOP.0000000000000194 (2015).
doi: 10.1097/MOP.0000000000000194 pubmed: 25635582 pmcid: 4422489
Scheidel, N. & Blacque, O. E. Intraflagellar transport complex A genes differentially regulate cilium formation and transition zone gating. Curr. Biol. 28, 3279–3287. https://doi.org/10.1016/j.cub.2018.08.017 (2018).
doi: 10.1016/j.cub.2018.08.017 pubmed: 30293716
Braun, D. A. & Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028191 (2017).
doi: 10.1101/cshperspect.a028191 pubmed: 27793968 pmcid: 5334254
Simms, R. J., Eley, L. & Sayer, J. A. Nephronophthisis. Eur. J. Hum. Genet. 17, 406–416. https://doi.org/10.1038/ejhg.2008.238 (2009).
doi: 10.1038/ejhg.2008.238 pubmed: 19066617
Schermer, B. et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 24, 4415–4424 (2005).
doi: 10.1038/sj.emboj.7600885
Nurnberger, J., Bacallao, R. L. & Phillips, C. L. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol. Biol. Cell 13, 3096–3106 (2002).
doi: 10.1091/mbc.e02-04-0195
Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150, 533–548. https://doi.org/10.1016/j.cell.2012.06.028 (2012).
doi: 10.1016/j.cell.2012.06.028 pubmed: 22863007 pmcid: 3433835
Choi, H. J. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell 51, 423–439. https://doi.org/10.1016/j.molcel.2013.08.006 (2013).
doi: 10.1016/j.molcel.2013.08.006 pubmed: 23973373 pmcid: 3790667
Airik, R. et al. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. J. Am. Soc. Nephrol. 25, 2573–2583. https://doi.org/10.1681/ASN.2013050565 (2014).
doi: 10.1681/ASN.2013050565 pubmed: 24722439 pmcid: 4214515
Walz, G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res. 369, 11–25. https://doi.org/10.1007/s00441-017-2599-7 (2017).
doi: 10.1007/s00441-017-2599-7 pubmed: 28361305 pmcid: 5487853
Blacque, O. E. & Sanders, A. A. Compartments within a compartment: What C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 10, 126–137. https://doi.org/10.4161/org.28830 (2014).
doi: 10.4161/org.28830 pubmed: 24732235 pmcid: 4049889
Tsuji, T., Matsuo, K., Nakahari, T., Marunaka, Y. & Yokoyama, T. Structural basis of the Inv compartment and ciliary abnormalities in Inv/nphp2 mutant mice. Cytoskeleton (Hoboken) 73, 45–56. https://doi.org/10.1002/cm.21264 (2016).
doi: 10.1002/cm.21264
Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).
doi: 10.1038/ng1552
Lienkamp, S. et al. Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proc. Natl. Acad. Sci. U. S. A. 107, 20388–20393. https://doi.org/10.1073/pnas.1013070107 (2010).
doi: 10.1073/pnas.1013070107 pubmed: 21059920 pmcid: 2996658
Hoff, S. et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat. Genet. 45, 951–956. https://doi.org/10.1038/ng.2681 (2013).
doi: 10.1038/ng.2681 pubmed: 23793029 pmcid: 3786259
Ramachandran, H. et al. Anks3 alters the sub-cellular localization of the Nek7 kinase. Biochem. Biophys. Res. Commun. 464, 901–907. https://doi.org/10.1016/j.bbrc.2015.07.063 (2015).
doi: 10.1016/j.bbrc.2015.07.063 pubmed: 26188091
Yakulov, T. A. et al. Anks3 interacts with nephronophthisis proteins and is required for normal renal development. Kidney Int. 87, 1191–1200. https://doi.org/10.1038/ki.2015.17 (2015).
doi: 10.1038/ki.2015.17 pubmed: 25671767
Shamseldin, H. E., Yakulov, T. A., Hashem, A., Walz, G. & Alkuraya, F. S. ANKS3 is mutated in a family with autosomal recessive laterality defect. Hum. Genet. 135, 1233–1239. https://doi.org/10.1007/s00439-016-1712-4 (2016).
doi: 10.1007/s00439-016-1712-4 pubmed: 27417436
Rothe, B. et al. Crystal structure of Bicc1 SAM polymer and mapping of interactions between the ciliopathy-associated proteins Bicc1, ANKS3, and ANKS6. Structure 26, 209–224. https://doi.org/10.1016/j.str.2017.12.002 (2018).
doi: 10.1016/j.str.2017.12.002 pubmed: 29290488
Saffman, E. E. et al. Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. Mol. Cell. Biol. 18, 4855–4862. https://doi.org/10.1128/mcb.18.8.4855 (1998).
doi: 10.1128/mcb.18.8.4855 pubmed: 9671494 pmcid: 109070
Maisonneuve, C. et al. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 136, 3019–3030. https://doi.org/10.1242/dev.038174 (2009).
doi: 10.1242/dev.038174 pubmed: 19666828
Chicoine, J. et al. Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Dev. Cell 13, 691–704. https://doi.org/10.1016/j.devcel.2007.10.002 (2007).
doi: 10.1016/j.devcel.2007.10.002 pubmed: 17981137
Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621. https://doi.org/10.1038/nsb956 (2003).
doi: 10.1038/nsb956 pubmed: 12858164
Aktas, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119. https://doi.org/10.1038/nature21715 (2017).
doi: 10.1038/nature21715 pubmed: 28355180
Machanick, P. & Bailey, T. L. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697. https://doi.org/10.1093/bioinformatics/btr189 (2011).
doi: 10.1093/bioinformatics/btr189 pubmed: 21486936 pmcid: 3106185
Leung, A. K., Calabrese, J. M. & Sharp, P. A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. U. S. A. 103, 18125–18130. https://doi.org/10.1073/pnas.0608845103 (2006).
doi: 10.1073/pnas.0608845103 pubmed: 17116888 pmcid: 1838717
Bordeleau, M. E. et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol. 2, 213–220. https://doi.org/10.1038/nchembio776 (2006).
doi: 10.1038/nchembio776 pubmed: 16532013
Schlimpert, M. et al. Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics 15, 71. https://doi.org/10.1007/s11306-019-1535-0 (2019).
doi: 10.1007/s11306-019-1535-0 pubmed: 31041607
Rothe, B. et al. Bicc1 polymerization regulates the localization and silencing of bound mRNA. Mol. Cell Biol. 35, 3339–3353. https://doi.org/10.1128/MCB.00341-15 (2015).
doi: 10.1128/MCB.00341-15 pubmed: 26217012 pmcid: 4561730
Mahboubi, H. & Stochaj, U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim. Biophys. Acta Mol. Basis Dis. 884–895, 2017. https://doi.org/10.1016/j.bbadis.2016.12.022 (1863).
doi: 10.1016/j.bbadis.2016.12.022
Gilks, N. et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383–5398. https://doi.org/10.1091/mbc.e04-08-0715 (2004).
doi: 10.1091/mbc.e04-08-0715 pubmed: 15371533 pmcid: 532018
Williams, G. T. & Farzaneh, F. Are snoRNAs and snoRNA host genes new players in cancer?. Nat. Rev. Cancer 12, 84–88. https://doi.org/10.1038/nrc3195 (2012).
doi: 10.1038/nrc3195 pubmed: 22257949
Xiao, J., Lin, H., Luo, X., Luo, X. & Wang, Z. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J. 30, 5021. https://doi.org/10.1038/emboj.2011.463 (2011).
doi: 10.1038/emboj.2011.463 pubmed: 22166998 pmcid: 3242983
Yasunaga, T. et al. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J. Cell Biol. 211, 963–973. https://doi.org/10.1083/jcb.201502043 (2015).
doi: 10.1083/jcb.201502043 pubmed: 26644512 pmcid: 4674276
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
doi: 10.1038/nmeth.2019 pubmed: 22743772
Ilik, I. A., Aktas, T., Maticzka, D., Backofen, R. & Akhtar, A. FLASH: Ultra-fast protocol to identify RNA–protein interactions in cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1141 (2019).
doi: 10.1093/nar/gkz1141 pmcid: 7026646
Thriene, K. et al. Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes. Mol. Cell Proteom. 17, 565–579. https://doi.org/10.1074/mcp.RA117.000437 (2018).
doi: 10.1074/mcp.RA117.000437
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. https://doi.org/10.1038/nbt.1511 (2008).
doi: 10.1038/nbt.1511 pubmed: 19029910

Auteurs

Luisa Estrada Mallarino (L)

Renal Division, Department of Medicine, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Christina Engel (C)

Renal Division, Department of Medicine, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.

İbrahim Avşar Ilık (İA)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.

Daniel Maticzka (D)

Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany.

Florian Heyl (F)

Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany.

Barbara Müller (B)

Renal Division, Department of Medicine, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.

Toma A Yakulov (TA)

Renal Division, Department of Medicine, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.

Jörn Dengjel (J)

Department of Dermatology, Medical Center, and Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.
Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.

Rolf Backofen (R)

Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany.

Asifa Akhtar (A)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.

Gerd Walz (G)

Renal Division, Department of Medicine, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany. gerd.walz@uniklinik-freiburg.de.
Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. gerd.walz@uniklinik-freiburg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH