Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules.
Ankyrin Repeat
Carrier Proteins
/ metabolism
Cilia
/ metabolism
Ciliopathies
/ metabolism
HEK293 Cells
HeLa Cells
Humans
Kidney
/ metabolism
Kidney Diseases, Cystic
/ congenital
Mutation
Nuclear Proteins
/ metabolism
Polycystic Kidney Diseases
/ genetics
RNA
/ metabolism
RNA-Binding Proteins
/ metabolism
Sterols
/ pharmacology
Stress, Physiological
/ physiology
Transcription Factors
/ metabolism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 09 2020
29 09 2020
Historique:
received:
09
02
2020
accepted:
05
05
2020
entrez:
30
9
2020
pubmed:
1
10
2020
medline:
5
1
2021
Statut:
epublish
Résumé
Mutations of cilia-associated molecules cause multiple developmental defects that are collectively termed ciliopathies. However, several ciliary proteins, involved in gating access to the cilium, also assume localizations at other cellular sites including the nucleus, where they participate in DNA damage responses to maintain tissue integrity. Molecular insight into how these molecules execute such diverse functions remains limited. A mass spectrometry screen for ANKS6-interacting proteins suggested an involvement of ANKS6 in RNA processing and/or binding. Comparing the RNA-binding properties of the known RNA-binding protein BICC1 with the three ankyrin-repeat proteins ANKS3, ANKS6 (NPHP16) and INVERSIN (NPHP2) confirmed that certain nephronophthisis (NPH) family members can interact with RNA molecules. We also observed that BICC1 and INVERSIN associate with stress granules in response to translational inhibition. Furthermore, BICC1 recruits ANKS3 and ANKS6 into TIA-1-positive stress granules after exposure to hippuristanol. Our findings uncover a novel function of NPH family members, and provide further evidence that NPH family members together with BICC1 are involved in stress responses to maintain tissue and organ integrity.
Identifiants
pubmed: 32994509
doi: 10.1038/s41598-020-72905-8
pii: 10.1038/s41598-020-72905-8
pmc: PMC7524721
doi:
Substances chimiques
ANKS3 protein, human
0
ANKS6 protein, human
0
Bicc1 protein, human
0
Carrier Proteins
0
INVS protein, human
0
Nuclear Proteins
0
RNA-Binding Proteins
0
Sterols
0
Transcription Factors
0
hippuristanol
0
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15954Références
Wolf, M. T. Nephronophthisis and related syndromes. Curr Opin Pediatr 27, 201–211. https://doi.org/10.1097/MOP.0000000000000194 (2015).
doi: 10.1097/MOP.0000000000000194
pubmed: 25635582
pmcid: 4422489
Scheidel, N. & Blacque, O. E. Intraflagellar transport complex A genes differentially regulate cilium formation and transition zone gating. Curr. Biol. 28, 3279–3287. https://doi.org/10.1016/j.cub.2018.08.017 (2018).
doi: 10.1016/j.cub.2018.08.017
pubmed: 30293716
Braun, D. A. & Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028191 (2017).
doi: 10.1101/cshperspect.a028191
pubmed: 27793968
pmcid: 5334254
Simms, R. J., Eley, L. & Sayer, J. A. Nephronophthisis. Eur. J. Hum. Genet. 17, 406–416. https://doi.org/10.1038/ejhg.2008.238 (2009).
doi: 10.1038/ejhg.2008.238
pubmed: 19066617
Schermer, B. et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 24, 4415–4424 (2005).
doi: 10.1038/sj.emboj.7600885
Nurnberger, J., Bacallao, R. L. & Phillips, C. L. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol. Biol. Cell 13, 3096–3106 (2002).
doi: 10.1091/mbc.e02-04-0195
Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150, 533–548. https://doi.org/10.1016/j.cell.2012.06.028 (2012).
doi: 10.1016/j.cell.2012.06.028
pubmed: 22863007
pmcid: 3433835
Choi, H. J. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell 51, 423–439. https://doi.org/10.1016/j.molcel.2013.08.006 (2013).
doi: 10.1016/j.molcel.2013.08.006
pubmed: 23973373
pmcid: 3790667
Airik, R. et al. Renal-retinal ciliopathy gene Sdccag8 regulates DNA damage response signaling. J. Am. Soc. Nephrol. 25, 2573–2583. https://doi.org/10.1681/ASN.2013050565 (2014).
doi: 10.1681/ASN.2013050565
pubmed: 24722439
pmcid: 4214515
Walz, G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res. 369, 11–25. https://doi.org/10.1007/s00441-017-2599-7 (2017).
doi: 10.1007/s00441-017-2599-7
pubmed: 28361305
pmcid: 5487853
Blacque, O. E. & Sanders, A. A. Compartments within a compartment: What C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 10, 126–137. https://doi.org/10.4161/org.28830 (2014).
doi: 10.4161/org.28830
pubmed: 24732235
pmcid: 4049889
Tsuji, T., Matsuo, K., Nakahari, T., Marunaka, Y. & Yokoyama, T. Structural basis of the Inv compartment and ciliary abnormalities in Inv/nphp2 mutant mice. Cytoskeleton (Hoboken) 73, 45–56. https://doi.org/10.1002/cm.21264 (2016).
doi: 10.1002/cm.21264
Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).
doi: 10.1038/ng1552
Lienkamp, S. et al. Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proc. Natl. Acad. Sci. U. S. A. 107, 20388–20393. https://doi.org/10.1073/pnas.1013070107 (2010).
doi: 10.1073/pnas.1013070107
pubmed: 21059920
pmcid: 2996658
Hoff, S. et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat. Genet. 45, 951–956. https://doi.org/10.1038/ng.2681 (2013).
doi: 10.1038/ng.2681
pubmed: 23793029
pmcid: 3786259
Ramachandran, H. et al. Anks3 alters the sub-cellular localization of the Nek7 kinase. Biochem. Biophys. Res. Commun. 464, 901–907. https://doi.org/10.1016/j.bbrc.2015.07.063 (2015).
doi: 10.1016/j.bbrc.2015.07.063
pubmed: 26188091
Yakulov, T. A. et al. Anks3 interacts with nephronophthisis proteins and is required for normal renal development. Kidney Int. 87, 1191–1200. https://doi.org/10.1038/ki.2015.17 (2015).
doi: 10.1038/ki.2015.17
pubmed: 25671767
Shamseldin, H. E., Yakulov, T. A., Hashem, A., Walz, G. & Alkuraya, F. S. ANKS3 is mutated in a family with autosomal recessive laterality defect. Hum. Genet. 135, 1233–1239. https://doi.org/10.1007/s00439-016-1712-4 (2016).
doi: 10.1007/s00439-016-1712-4
pubmed: 27417436
Rothe, B. et al. Crystal structure of Bicc1 SAM polymer and mapping of interactions between the ciliopathy-associated proteins Bicc1, ANKS3, and ANKS6. Structure 26, 209–224. https://doi.org/10.1016/j.str.2017.12.002 (2018).
doi: 10.1016/j.str.2017.12.002
pubmed: 29290488
Saffman, E. E. et al. Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. Mol. Cell. Biol. 18, 4855–4862. https://doi.org/10.1128/mcb.18.8.4855 (1998).
doi: 10.1128/mcb.18.8.4855
pubmed: 9671494
pmcid: 109070
Maisonneuve, C. et al. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 136, 3019–3030. https://doi.org/10.1242/dev.038174 (2009).
doi: 10.1242/dev.038174
pubmed: 19666828
Chicoine, J. et al. Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Dev. Cell 13, 691–704. https://doi.org/10.1016/j.devcel.2007.10.002 (2007).
doi: 10.1016/j.devcel.2007.10.002
pubmed: 17981137
Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621. https://doi.org/10.1038/nsb956 (2003).
doi: 10.1038/nsb956
pubmed: 12858164
Aktas, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119. https://doi.org/10.1038/nature21715 (2017).
doi: 10.1038/nature21715
pubmed: 28355180
Machanick, P. & Bailey, T. L. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697. https://doi.org/10.1093/bioinformatics/btr189 (2011).
doi: 10.1093/bioinformatics/btr189
pubmed: 21486936
pmcid: 3106185
Leung, A. K., Calabrese, J. M. & Sharp, P. A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. U. S. A. 103, 18125–18130. https://doi.org/10.1073/pnas.0608845103 (2006).
doi: 10.1073/pnas.0608845103
pubmed: 17116888
pmcid: 1838717
Bordeleau, M. E. et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol. 2, 213–220. https://doi.org/10.1038/nchembio776 (2006).
doi: 10.1038/nchembio776
pubmed: 16532013
Schlimpert, M. et al. Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics 15, 71. https://doi.org/10.1007/s11306-019-1535-0 (2019).
doi: 10.1007/s11306-019-1535-0
pubmed: 31041607
Rothe, B. et al. Bicc1 polymerization regulates the localization and silencing of bound mRNA. Mol. Cell Biol. 35, 3339–3353. https://doi.org/10.1128/MCB.00341-15 (2015).
doi: 10.1128/MCB.00341-15
pubmed: 26217012
pmcid: 4561730
Mahboubi, H. & Stochaj, U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim. Biophys. Acta Mol. Basis Dis. 884–895, 2017. https://doi.org/10.1016/j.bbadis.2016.12.022 (1863).
doi: 10.1016/j.bbadis.2016.12.022
Gilks, N. et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383–5398. https://doi.org/10.1091/mbc.e04-08-0715 (2004).
doi: 10.1091/mbc.e04-08-0715
pubmed: 15371533
pmcid: 532018
Williams, G. T. & Farzaneh, F. Are snoRNAs and snoRNA host genes new players in cancer?. Nat. Rev. Cancer 12, 84–88. https://doi.org/10.1038/nrc3195 (2012).
doi: 10.1038/nrc3195
pubmed: 22257949
Xiao, J., Lin, H., Luo, X., Luo, X. & Wang, Z. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J. 30, 5021. https://doi.org/10.1038/emboj.2011.463 (2011).
doi: 10.1038/emboj.2011.463
pubmed: 22166998
pmcid: 3242983
Yasunaga, T. et al. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J. Cell Biol. 211, 963–973. https://doi.org/10.1083/jcb.201502043 (2015).
doi: 10.1083/jcb.201502043
pubmed: 26644512
pmcid: 4674276
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
doi: 10.1038/nmeth.2019
pubmed: 22743772
Ilik, I. A., Aktas, T., Maticzka, D., Backofen, R. & Akhtar, A. FLASH: Ultra-fast protocol to identify RNA–protein interactions in cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1141 (2019).
doi: 10.1093/nar/gkz1141
pmcid: 7026646
Thriene, K. et al. Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes. Mol. Cell Proteom. 17, 565–579. https://doi.org/10.1074/mcp.RA117.000437 (2018).
doi: 10.1074/mcp.RA117.000437
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. https://doi.org/10.1038/nbt.1511 (2008).
doi: 10.1038/nbt.1511
pubmed: 19029910