Deep learning-based reduced order models in cardiac electrophysiology.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2020
Historique:
received: 09 06 2020
accepted: 06 09 2020
entrez: 1 10 2020
pubmed: 2 10 2020
medline: 24 11 2020
Statut: epublish

Résumé

Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depolarization cycle occurring at every heart beat that models the time evolution of the electrical potential across the cell membrane, as well as a set of ionic variables. Multiple solutions of these systems, corresponding to different model inputs, are required to evaluate outputs of clinical interest, such as activation maps and action potential duration. More importantly, these models feature coherent structures that propagate over time, such as wavefronts. These systems can hardly be reduced to lower dimensional problems by conventional reduced order models (ROMs) such as, e.g., the reduced basis method. This is primarily due to the low regularity of the solution manifold (with respect to the problem parameters), as well as to the nonlinear nature of the input-output maps that we intend to reconstruct numerically. To overcome this difficulty, in this paper we propose a new, nonlinear approach relying on deep learning (DL) algorithms-such as deep feedforward neural networks and convolutional autoencoders-to obtain accurate and efficient ROMs, whose dimensionality matches the number of system parameters. We show that the proposed DL-ROM framework can efficiently provide solutions to parametrized electrophysiology problems, thus enabling multi-scenario analysis in pathological cases. We investigate four challenging test cases in cardiac electrophysiology, thus demonstrating that DL-ROM outperforms classical projection-based ROMs.

Identifiants

pubmed: 33002014
doi: 10.1371/journal.pone.0239416
pii: PONE-D-20-17553
pmc: PMC7529269
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0239416

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):501-22
pubmed: 15142759
IEEE Trans Biomed Eng. 2009 Oct;56(10):2546-8
pubmed: 19237339
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190345
pubmed: 32448072
Philos Trans A Math Phys Eng Sci. 2008 Sep 28;366(1879):3381-409
pubmed: 18603526
Front Physiol. 2019 Jun 26;10:721
pubmed: 31297060
Int J Numer Method Biomed Eng. 2017 Dec;33(12):
pubmed: 28474497
Int J Numer Method Biomed Eng. 2018 Jul;34(7):e2985
pubmed: 29577657
Circ Res. 2011 Jan 7;108(1):113-28
pubmed: 21212393
Int J Numer Method Biomed Eng. 2018 Feb;34(2):
pubmed: 28636811
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190335
pubmed: 32448070
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190334
pubmed: 32448071
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190349
pubmed: 32448065
Med Image Anal. 2018 Aug;48:43-57
pubmed: 29843078
PLoS One. 2018 May 24;13(5):e0197704
pubmed: 29795631
Nature. 2002 Jan 10;415(6868):219-26
pubmed: 11805846
Biophys J. 1961 Jul;1(6):445-66
pubmed: 19431309
Prog Biophys Mol Biol. 2011 Jan;104(1-3):22-48
pubmed: 20553746
Med Biol Eng Comput. 2018 May;56(5):761-780
pubmed: 28933043
J Comput Phys. 2017 Oct 1;346:191-211
pubmed: 28819329
J Physiol. 2016 Dec 1;594(23):6833-6847
pubmed: 26990229
J Mol Cell Cardiol. 2016 Jul;96:49-62
pubmed: 26611884
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190558
pubmed: 32448064
J Math Biol. 2013 Aug;67(2):359-88
pubmed: 22684847
Comput Methods Appl Mech Eng. 2020 Apr 1;361:112762
pubmed: 32565583
Bull Math Biol. 2003 Sep;65(5):767-93
pubmed: 12909250
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1088-100
pubmed: 16565318

Auteurs

Stefania Fresca (S)

MOX - Dipartimento di Matematica, Politecnico di Milano, Milano, Italy.

Andrea Manzoni (A)

MOX - Dipartimento di Matematica, Politecnico di Milano, Milano, Italy.

Luca Dedè (L)

MOX - Dipartimento di Matematica, Politecnico di Milano, Milano, Italy.

Alfio Quarteroni (A)

MOX - Dipartimento di Matematica, Politecnico di Milano, Milano, Italy.
Mathematics Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Breast Neoplasms Female Deep Learning Ultrasonography, Mammary
Humans Deep Learning Mouth Neoplasms Drug Resistance, Neoplasm Cell Line, Tumor
Humans Incidence Deep Learning China Hepatitis E

Classifications MeSH