Optical and mechanical properties of streptavidin-conjugated gold nanospheres through data mining techniques.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 10 2020
Historique:
received: 17 01 2020
accepted: 31 08 2020
entrez: 2 10 2020
pubmed: 3 10 2020
medline: 3 10 2020
Statut: epublish

Résumé

The thermo-mechanical properties of streptavidin-conjugated gold nanospheres, adhered to a surface via complex molecular chains, are investigated by two-color infrared asynchronous optical sampling pump-probe spectroscopy. Nanospheres with different surface densities have been deposited and exposed to a plasma treatment to modify their polymer binding chains. The aim is to monitor their optical response in complex chemical environments that may be experienced in, e.g., photothermal therapy or drug delivery applications. By applying unsupervised learning techniques to the spectroscopic traces, we identify their thermo-mechanical response variation. This variation discriminates nanospheres in different chemical environments or different surface densities. Such discrimination is not evident based on a standard analysis of the spectroscopic traces. This kind of analysis is important, given the widespread application of conjugated gold nanospheres in medicine and biology.

Identifiants

pubmed: 33004805
doi: 10.1038/s41598-020-72534-1
pii: 10.1038/s41598-020-72534-1
pmc: PMC7530730
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

16230

Références

Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).
pubmed: 21434614 doi: 10.1021/cr1002547 pmcid: 21434614
Beane, G., Devkota, T., Brown, B. S. & Hartland, G. V. Ultrafast measurements of the dynamics of single nanostructures: a review. Rep. Prog. Phys. 82, 016401 (2019).
pubmed: 30485256 doi: 10.1088/1361-6633/aaea4b pmcid: 30485256
Link, S. & El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003).
pubmed: 12626731 doi: 10.1146/annurev.physchem.54.011002.103759 pmcid: 12626731
Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).
pubmed: 15826010 doi: 10.1021/cr030063a pmcid: 15826010
Huang, X. & El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010).
doi: 10.1016/j.jare.2010.02.002
Pileni, M. 2d superlattices and 3d supracrystals of metal nanocrystals: a new scientific adventure. J. Mater. Chem. 21, 16748–16758 (2011).
doi: 10.1039/c1jm11128k
Hettich, M. et al. Modification of vibrational damping times in thin gold films by self-assembled molecular layers. Appl. Phys. Lett. 98, 261908 (2011).
doi: 10.1063/1.3604790
Grossmann, M. et al. Characterization of thin-film adhesion and phonon lifetimes in al/si membranes by picosecond ultrasonics. New J. Phys. 19, 053019 (2017).
doi: 10.1088/1367-2630/aa6d05
Peli, S. et al. Mechanical properties of Ag nanoparticle thin films synthesized by supersonic cluster beam deposition. J. Phys. Chem. C 120, 4673–4681 (2016).
doi: 10.1021/acs.jpcc.6b00160
Benetti, G. et al. Bottom-up mechanical nanometrology of granular Ag nanoparticles thin films. J. Phys. Chem. C 121, 22434–22441 (2017).
doi: 10.1021/acs.jpcc.7b05795
Benetti, G. et al. Photoacoustic sensing of trapped fluids in nanoporous thin films: device engineering and sensing scheme. ACS Appl. Mater. Interfaces 10, 27947–27954 (2018).
pubmed: 30039696 doi: 10.1021/acsami.8b07925 pmcid: 30039696
Gandolfi, M. et al. Ultrafast thermo-optical dynamics of plasmonic nanoparticles. J. Phys. Chem. C 122, 8655–8666 (2018).
doi: 10.1021/acs.jpcc.8b01875
Kelf, T. et al. Ultrafast vibrations of gold nanorings. Nano Lett. 11, 3893–3898 (2011).
pubmed: 21861482 doi: 10.1021/nl202045z pmcid: 21861482
Medeghini, F. et al. Signatures of small morphological anisotropies in the plasmonic and vibrational responses of individual nano-objects. J. Phys. Chem. Lett. 10, 5372 (2019).
pubmed: 31449419 doi: 10.1021/acs.jpclett.9b01898 pmcid: 31449419
Travagliati, M. et al. Interface nano-confined acoustic waves in polymeric surface phononic crystals. Appl. Phys. Lett. 106, 021906 (2015).
doi: 10.1063/1.4905850
Voisin, C., Del Fatti, N., Christofilos, D. & Vallée, F. Time-resolved investigation of the vibrational dynamics of metal nanoparticles. Appl. Surf. Sci. 164, 131–139 (2000).
doi: 10.1016/S0169-4332(00)00347-0
Hartland, G. V. Coherent vibrational motion in metal particles: determination of the vibrational amplitude and excitation mechanism. J. Chem. Phys. 116, 8048–8055 (2002).
doi: 10.1063/1.1469021
Nardi, D. et al. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals. Nano Lett. 11, 4126–4133 (2011).
pubmed: 21910426 doi: 10.1021/nl201863n pmcid: 21910426
Banfi, F. et al. Ab initio thermodynamics calculation of all-optical time-resolved calorimetry of nanosize systems: evidence of nanosecond decoupling of electron and phonon temperatures. Phys. Rev. B 81, 155426 (2010).
doi: 10.1103/PhysRevB.81.155426
Banfi, F. et al. Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles. Appl. Phys. Lett. 100, 011902 (2012).
doi: 10.1063/1.3673559
Stoll, T. et al. Time-resolved investigations of the cooling dynamics of metal nanoparticles: impact of environment. J. Phys. Chem. C 119, 12757–12764 (2015).
doi: 10.1021/acs.jpcc.5b03231
Caddeo, C. et al. Thermal boundary resistance from transient nanocalorimetry: a multiscale modeling approach. Phys. Rev. B 95, 085306 (2017).
doi: 10.1103/PhysRevB.95.085306
Smith, B. A., Zhang, J. Z., Giebel, U. & Schmid, G. Direct probe of size-dependent electronic relaxation in single-sized au and nearly monodisperse pt colloidal nano-particles. Chem. Phys. Lett. 270, 139–144 (1997).
doi: 10.1016/S0009-2614(97)00339-4
Muskens, O. L., Del Fatti, N. & Vallée, F. Femtosecond response of a single metal nanoparticle. Nano Lett. 6, 552–556 (2006).
pubmed: 16522061 doi: 10.1021/nl0524086 pmcid: 16522061
Zavelani-Rossi, M. et al. Transient optical response of a single gold nanoantenna: the role of plasmon detuning. ACS Photon. 2, 521–529 (2015).
doi: 10.1021/ph5004175
Joplin, A., Chang, W.-S. & Link, S. Imaging and spectroscopy of single metal nanostructure absorption. Langmuir 34, 3775–3786. https://doi.org/10.1021/acs.langmuir.7b03154 (2018).
doi: 10.1021/acs.langmuir.7b03154 pubmed: 29149571 pmcid: 29149571
Peli, S. et al. Discrimination of molecular thin films by surface-sensitive time-resolved optical spectroscopy. Appl. Phys. Lett. 107, 163107. https://doi.org/10.1063/1.4934216 (2015).
doi: 10.1063/1.4934216
Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C. & Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007).
doi: 10.1021/nl070648a
Grillet, N. et al. Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. J. Phys. Chem. C 117, 2274–2282 (2013).
doi: 10.1021/jp311502h
Ingle, A. P., Duran, N. & Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 98, 1001–1009. https://doi.org/10.1007/s00253-013-5422-8 (2014).
doi: 10.1007/s00253-013-5422-8 pubmed: 24305741 pmcid: 24305741
Marambio-Jones, C. & Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551. https://doi.org/10.1007/s11051-010-9900-y (2010).
doi: 10.1007/s11051-010-9900-y
Wu, Y., Ali, M. R., Chen, K., Fang, N. & El-Sayed, M. A. Gold nanoparticles in biological optical imaging. Nano Today 24, 120–140 (2019).
doi: 10.1016/j.nantod.2018.12.006
Brick, D. et al. Interface adhesion and structural characterization of rolled-up gaas/in 0.2 ga 0.8 as multilayer tubes by coherent phonon spectroscopy. Sci. Rep. 7, 5385 (2017).
pubmed: 28710450 doi: 10.1038/s41598-017-05739-6 pmcid: 28710450
Nardi, D. et al. Impulsively excited surface phononic crystals: a route toward novel sensing schemes. IEEE Sens. J. 15, 5142–5150 (2015).
doi: 10.1109/JSEN.2015.2436881
Abbas, A. et al. Picosecond time resolved opto-acoustic imaging with 48 mhz frequency resolution. Opt. Express 22, 7831–7843 (2014).
pubmed: 24718159 doi: 10.1364/OE.22.007831 pmcid: 24718159
Fuentes-Domínguez, R., Pérez-Cota, F., Naznin, S., Smith, R. J. & Clark, M. Super-resolution imaging using nano-bells. Sci. Rep. 8, 16373 (2018).
pubmed: 30401881 doi: 10.1038/s41598-018-34744-6 pmcid: 30401881
Liu, L., Plawinski, L., Durrieu, M.-C. & Audoin, B. Label-free multi-parametric imaging of single cells: dual picosecond optoacoustic microscopy. J. Biophoton. 12, e201900045 (2019).
Dehoux, T. et al. All-optical broadband ultrasonography of single cells. Sci. Rep. 5, 8650 (2015).
pubmed: 25731090 doi: 10.1038/srep08650 pmcid: 25731090
Pérez-Cota, F. et al. High resolution 3d imaging of living cells with sub-optical wavelength phonons. Sci. Rep. 6, 39326 (2016).
pubmed: 27996028 doi: 10.1038/srep39326 pmcid: 27996028
Pirri, G., Damin, F., Chiari, M., Bontempi, E. & Depero, L. E. Characterization of a polymeric adsorbed coating for dna microarray glass slides. Anal. Chem. 76, 1352–1358 (2004).
pubmed: 14987092 doi: 10.1021/ac0352629 pmcid: 14987092
Stoica, V. A., Sheu, Y.-M., Reis, D. A. & Clarke, R. Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling. Opt. Express 16, 2322–2335 (2008).
pubmed: 18542311 doi: 10.1364/OE.16.002322 pmcid: 18542311
Jolliffe, I. Principal Component Analysis (Wiley, Hoboken, 2002).
Wall, M. E., Rechtsteiner, A. & Rocha, L. M. Singular value decomposition and principal component analysis. In A practical approach to microarray data analysis, 91–109 (Springer, 2003).
Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
doi: 10.1007/0-387-37825-1
Hodak, J. H., Henglein, A. & Hartland, G. V. Size dependent properties of au particles: Coherent excitation and dephasing of acoustic vibrational modes. J. Chem. Phys. 111, 8613–8621 (1999).
doi: 10.1063/1.480202
Crut, A., Maioli, P., Del Fatti, N. & Vallée, F. Acoustic vibrations of metal nano-objects: time-domain investigations. Phys. Rep. 549, 1–43 (2015).
doi: 10.1016/j.physrep.2014.09.004
Sun, C., Vallée, F., Acioli, L., Ippen, E. & Fujimoto, J. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B Condens. Matter 50, 15337 (1994).
pubmed: 9975886 doi: 10.1103/PhysRevB.50.15337 pmcid: 9975886
De Sá, J. M. Pattern Recognition: Concepts, Methods, and Applications (Springer, Berlin, 2001).
Kaufman, L. & Rousseeuw, P. J. Finding groups in data: an introduction to cluster analysis (Wiley, Hoboken, 2009).
Weisberg, S. Applied Linear Regression Vol. 528 (Wiley, Hoboken, 2005).
doi: 10.1002/0471704091
John, G. H. Robust decision trees: removing outliers from databases. KDD 95, 174–179 (1995).
Hodge, V. & Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 22, 85–126 (2004).
doi: 10.1023/B:AIRE.0000045502.10941.a9
Link, S., Burda, C., Wang, Z. L. & El-Sayed, M. A. Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys. 111, 1255–1264 (1999).
doi: 10.1063/1.479310
Hodak, J. H., Henglein, A. & Hartland, G. V. Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) au nanoparticles. J. Chem. Phys. 112, 5942–5947 (2000).
doi: 10.1063/1.481167
Jain, P. K., Qian, W. & El-Sayed, M. A. Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. J. Phys. Chem. B 110, 136–142 (2006).
pubmed: 16471511 doi: 10.1021/jp055562p pmcid: 16471511
Schneider, D. et al. Role of polymer graft architecture on the acoustic eigenmode formation in densely polymer-tethered colloidal particles. ACS Macro Lett. 3, 1059–1063 (2014).
doi: 10.1021/mz500433h
Bashkatov, A., Genina, E., Kochubey, V. & Tuchin, V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543 (2005).
doi: 10.1088/0022-3727/38/15/004
Ali, M. R., Ali, H. R., Rankin, C. R. & El-Sayed, M. A. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 102, 1–8 (2016).
pubmed: 27318931 doi: 10.1016/j.biomaterials.2016.06.017 pmcid: 27318931
Dreaden, E. C., Austin, L. A., Mackey, M. A. & El-Sayed, M. A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv. 3, 457–478 (2012).
pubmed: 22834077 doi: 10.4155/tde.12.21 pmcid: 22834077
Wray, S., Cope, M., Delpy, D. T., Wyatt, J. S. & Reynolds, E. O. R. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochimica et Biophysica Acta (BBA)-Bioenergetics 933, 184–192 (1988).
doi: 10.1016/0005-2728(88)90069-2

Auteurs

Simone Peli (S)

Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.

Andrea Ronchi (A)

Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.

Giada Bianchetti (G)

Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy.
Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.

Francesco Rossella (F)

NEST, Scuola Normale Superiore and CNR - Istituto Nanoscienze, piazza San Silvestro 12, 56127, Pisa, Italy.

Claudio Giannetti (C)

Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.

Marcella Chiari (M)

Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy.

Pasqualantonio Pingue (P)

NEST, Scuola Normale Superiore and CNR - Istituto Nanoscienze, piazza San Silvestro 12, 56127, Pisa, Italy.

Francesco Banfi (F)

Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
FemtoNanoOptics Group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France.

Gabriele Ferrini (G)

Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy. gabriele.ferrini@unicatt.it.
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy. gabriele.ferrini@unicatt.it.

Classifications MeSH