Population pharmacokinetics, safety and dosing optimization of voriconazole in patients with liver dysfunction: A prospective observational study.


Journal

British journal of clinical pharmacology
ISSN: 1365-2125
Titre abrégé: Br J Clin Pharmacol
Pays: England
ID NLM: 7503323

Informations de publication

Date de publication:
04 2021
Historique:
revised: 05 09 2020
received: 02 05 2020
accepted: 08 09 2020
pubmed: 4 10 2020
medline: 27 7 2021
entrez: 3 10 2020
Statut: ppublish

Résumé

Voriconazole is a broad-spectrum antifungal agent for the treatment of invasive fungal infections. There is limited information about the pharmacokinetics and appropriate dosage of voriconazole in patients with liver dysfunction. This study aimed to explore the relationship between voriconazole trough concentration (C The study prospectively enrolled 51 patients with 272 voriconazole concentrations. Receiver operating characteristic curves were used to explore the relationship between voriconazole C Receiver operating characteristic curve analysis revealed that voriconazole C Lower doses and longer dosing intervals should be considered for patients with liver dysfunction. TBIL-based dosing regimens provide a practical strategy for achieving voriconazole therapeutic range and therefore maximizing treatment outcomes.

Identifiants

pubmed: 33010043
doi: 10.1111/bcp.14578
doi:

Substances chimiques

Antifungal Agents 0
Voriconazole JFU09I87TR

Banques de données

ChiCTR
['ChiCTR-RRC-1800015015']

Types de publication

Journal Article Observational Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1890-1902

Informations de copyright

© 2020 British Pharmacological Society.

Références

Jalan R, Fernandez J, Wiest R, et al. Bacterial infections in cirrhosis: a position statement based on the EASL special conference 2013. J Hepatol. 2014;60(6):1310-1324.
Lin LN, Zhu Y, Che FB, Gu JL, Chen JH. Invasive fungal infections secondary to acute-on-chronic liver failure: a retrospective study. Mycoses. 2013;56(4):429-433.
Chen J, Yang Q, Huang J, Li L. Risk factors for invasive pulmonary aspergillosis and hospital mortality in acute-on-chronic liver failure patients: a retrospective-cohort study. Int J Med Sci. 2013;10(12):1625-1631.
Gao J, Zhang Q, Wu Y, et al. Improving survival of acute-on-chronic liver failure patients complicated with invasive pulmonary aspergillosis. Sci Rep. 2018;8:876-883.
Falcone M, Massetti AP, Russo A, Vullo V, Venditti M. Invasive aspergillosis in patients with liver disease. Med Mycol. 2011;49(4):406-413.
Verma N, Singh S, Taneja S, et al. Invasive fungal infections amongst patients with acute-on-chronic liver failure at high risk for fungal infections. Liver international: official journal of the International Association for the Study of the. Liver. 2019;39:503-513.
Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36(5):630-637.
Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540-547.
Hoenigl M, Duettmann W, Raggam RB, et al. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother. 2013;57(7):3262-3267.
Li ZW, Peng FH, Yan M, et al. Impact of CYP2C19 genotype and liver function on Voriconazole pharmacokinetics in renal transplant recipients. Ther Drug Monit. 2017;39(4):422-428.
Yan M, Wu ZF, Tang D, et al. The impact of proton pump inhibitors on the pharmacokinetics of voriconazole in vitro and in vivo. Biomed Pharmacother. 2018;108:60-64.
Lin XB, Li ZW, Yan M, et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 2018;84(7):1587-1597.
Purkins L, Wood N, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46(8):2546-2553.
Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201-211.
Wang T, Zhu H, Sun J, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents. 2014;44(5):436-442.
Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147-1161.
Tang D, Song BL, Yan M, et al. Identifying factors affecting the pharmacokinetics of voriconazole in patients with liver dysfunction: a population pharmacokinetic approach. Basic Clin Pharmacol Toxicol. 2019;125(1):34-43.
Trang M, Dudley MN, Bhavnani SM. Use of Monte Carlo simulation and considerations for PK-PD targets to support antibacterial dose selection. Curr Opin Pharmacol. 2017;36:107-113.
Pierrat A, Gravier E, Saunders C, et al. Predicting GFR in children and adults: a comparison of the Cockcroft-gault, Schwartz, and modification of diet in renal disease formulas. Kidney Int. 2003;64(4):1425-1436.
Industry FGf. Pharmacokinetics in Patients with Impaired Hepatic Function: study design, data analysis, and impact on dosing and labeling. May 2003.
Kamath PS, Kim WR. The model for end-stage liver disease (MELD). Hepatology (Baltimore, md). 2007;45:797-805.
Moriyama B, Obeng AO, Barbarino J, et al. Clinical Pharmacogenetics implementation consortium (CPIC) guidelines for CYP2C19 and Voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45-51.
Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381-390.
Chen K, Zhang X, Ke X, Du G, Yang K, Zhai S. Individualized medication of Voriconazole: a practice guideline of the division of therapeutic drug monitoring, Chinese pharmacological society. Ther Drug Monit. 2018;40(6):663-674.
Wang T, Chen S, Sun J, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother. 2014;69(2):463-470.
Farkas A, Daroczi G, Villasurda P, Dolton M, Nakagaki M, Roberts JA. Comparative evaluation of the predictive performances of three different structural population pharmacokinetic models to predict future Voriconazole concentrations. Antimicrob Agents Chemother. 2016;60(11):6806-6812.
Han K, Capitano B, Bies R, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54(10):4424-4431.
Leveque D, Nivoix Y, Jehl F, Herbrecht R. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2006;27(4):274-284.
Mitsani D, Nguyen MH, Shields RK, et al. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother. 2012;56(5):2371-2377.
Benedetti MS, Whomsley R, Canning M. Drug metabolism in the paediatric population and in the elderly. Drug Discov Today. 2007;12(15-16):599-610.
Pea F. Pharmacokinetics and drug metabolism of antibiotics in the elderly. Expert Opin Drug Metab Toxicol. 2018;14(10):1087-1100.
Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67-76.
Lamoureux F, Duflot T, Woillard JB, et al. Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. Int J Antimicrob Agents. 2016;47(2):124-131.
Li X, Yu C, Wang T, Chen K, Zhai S, Tang H. Effect of cytochrome P450 2C19 polymorphisms on the clinical outcomes of voriconazole: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2016;72(10):1185-1193.
Lee S, Kim BH, Nam WS, et al. Effect of CYP2C19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2012;52(2):195-203.
Weiss J, Ten Hoevel MM, Burhenne J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196-204.
Ohnishi A, Murakami S, Akizuki S, Mochizuki J, Echizen H, Takagi I. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease. J Clin Pharmacol. 2005;45(11):1221-1229.
Wang T, Yan M, Tang D, et al. Therapeutic drug monitoring and safety of voriconazole therapy in patients with Child-Pugh class B and C cirrhosis: a multicenter study. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases. 2018;72:49-54.
Wang T, Yan M, Tang D, et al. A retrospective, multicenter study of voriconazole trough concentrations and safety in patients with Child-Pugh class C cirrhosis. J Clin Pharm Ther. 2018;43(6):849-854.
Yamada T, Imai S, Koshizuka Y, et al. Necessity for a significant maintenance dosage reduction of Voriconazole in patients with severe liver cirrhosis (Child-Pugh class C). Biol Pharm Bull. 2018;41(7):1112-1118.
Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(9):4793-4799.
Dolton MJ, Mikus G, Weiss J, Ray JE, McLachlan AJ. Understanding variability with voriconazole using a population pharmacokinetic approach: implications for optimal dosing. J Antimicrob Chemother. 2014;69(6):1633-1641.
Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55(10):4782-4788.

Auteurs

Dan Tang (D)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.

Miao Yan (M)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Bai-Li Song (BL)

School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.

Yi-Chang Zhao (YC)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Yi-Wen Xiao (YW)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Feng Wang (F)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Wu Liang (W)

Changsha VALS Technology Co., Ltd, China.

Bi-Kui Zhang (BK)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Xi-Jing Chen (XJ)

School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.

Jian-Jun Zou (JJ)

Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.

Yi Tian (Y)

Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Wen-Long Wang (WL)

Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Yong-Fang Jiang (YF)

Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Guo-Zhong Gong (GZ)

Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Min Zhang (M)

Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Da-Xiong Xiang (DX)

Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH