Long-term effects of global change on occupancy and flight period of wild bees in Belgium.

abundance agricultural intensification climate change community phenology pollinator urbanization

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
Dec 2020
Historique:
received: 15 05 2020
revised: 28 08 2020
accepted: 14 09 2020
pubmed: 6 10 2020
medline: 15 4 2021
entrez: 5 10 2020
Statut: ppublish

Résumé

Global change affects species by modifying their abundance, spatial distribution, and activity period. The challenge is now to identify the respective drivers of those responses and to understand how those responses combine to affect species assemblages and ecosystem functioning. Here we correlate changes in occupancy and mean flight date of 205 wild bee species in Belgium with temporal changes in temperature trend and interannual variation, agricultural intensification, and urbanization. Over the last 70 years, bee occupancy decreased on average by 33%, most likely because of agricultural intensification, and flight period of bees advanced on average by 4 days, most likely because of interannual temperature changes. Those responses resulted in a synergistic effect because species which increased in occupancy tend to be those that have shifted their phenologies earlier in the season. This leads to an overall advancement and shortening of the pollination season by 9 and 15 days respectively, with lower species richness and abundance compared to historical pollinator assemblages, except at the early start of the season. Our results thus suggest a strong decline in pollination function and services.

Identifiants

pubmed: 33016508
doi: 10.1111/gcb.15379
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6753-6766

Subventions

Organisme : Ministère de la Transition Ecologique et Solidaire
ID : SJ 3-17
Organisme : Belgian Federal Science Policy Office
ID : BR/132/A1/BELBEES
Organisme : Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Organisme : Fonds de la Recherche Scientifique
Organisme : Research Foundation-Flanders
ID : 3094785

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Adler, P. B., & Levine, J. M. (2007). Contrasting relationships between precipitation and species richness in space and time. Oikos, 116(2), 221-232. https://doi.org/10.1111/j.0030-1299.2007.15327.x
Aldridge, G., Inouye, D. W., Forrest, J. R. K., Barr, W. A., & Miller-Rushing, A. J. (2011). Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. Journal of Ecology, 99(4), 905-913. https://doi.org/10.1111/j.1365-2745.2011.01826.x
Baldock, K. C. R., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., Potts, S. G., Robertson, K. M., Scott, A. V., Stone, G. N., Vaughan, I. P., & Memmott, J. (2015). Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282(1803), 20142849. https://doi.org/10.1098/rspb.2014.2849
Balfour, N. J., Ollerton, J., Castellanos, M. C., & Ratnieks, F. L. W. (2018). British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 222, 278-283. https://doi.org/10.1016/j.biocon.2018.04.028
Bartomeus, I., Ascher, J. S., Gibbs, J., Danforth, B. N., Wagner, D. L., Hedtke, S. M., & Winfree, R. (2013). Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4656-4660. https://doi.org/10.1073/pnas.1218503110
Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20645-20649. https://doi.org/10.1073/pnas.1115559108
Bartomeus, I., Stavert, J. R., Ward, D., & Aguado, O. (2019). Historical collections as a tool for assessing the global pollination crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1763), 20170389. https://doi.org/10.1098/rstb.2017.0389
Bates, A. J., Sadler, J. P., Fairbrass, A. J., Falk, S. J., Hale, J. D., & Matthews, T. J. (2011). Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS One, 6(8), e23459. https://doi.org/10.1371/journal.pone.0023459
Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A. P., Potts, S. G., Kleukers, R., Thomas, C. D., Settele, J., & Kunin, W. E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785), 351-354. https://doi.org/10.1126/science.1127863
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400. https://doi.org/10.32614/RJ-2017-066
CaraDonna, P. J., Iler, A. M., & Inouye, D. W. (2014). Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4916-4921. https://doi.org/10.1073/pnas.1323073111
Deguines, N., Julliard, R., de Flores, M., & Fontaine, C. (2012). The whereabouts of flower visitors: Contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS One, 7(9), e45822. https://doi.org/10.1371/journal.pone.0045822
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668-6672. https://doi.org/10.1073/pnas.0709472105
Diez, J. M., Ibáñez, I., Miller-Rushing, A. J., Mazer, S. J., Crimmins, T. M., Crimmins, M. A., Bertelsen, C. D., & Inouye, D. W. (2012). Forecasting phenology: From species variability to community patterns. Ecology Letters, 15(6), 545-553. https://doi.org/10.1111/j.1461-0248.2012.01765.x
Donald, P. F., Sanderson, F. J., Burfield, I. J., & van Bommel, F. P. J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agriculture, Ecosystems & Environment, 116(3), 189-196. https://doi.org/10.1016/j.agee.2006.02.007
Duchenne, F., Thébault, E., Michez, D., Elias, M., Drake, M., Persson, M., Piot, J. S., Pollet, M., Vanormelingen, P., & Fontaine, C. (2020). Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology & Evolution, 4(1), 115-121. https://doi.org/10.1038/s41559-019-1062-4
Encinas-Viso, F., Revilla, T. A., & Etienne, R. S. (2012). Phenology drives mutualistic network structure and diversity: Effects on the ynamics of mutualistic networks. Ecology Letters, 15(3), 198-208. https://doi.org/10.1111/j.1461-0248.2011.01726.x
Fortel, L., Henry, M., Guilbaud, L., Guirao, A. L., Kuhlmann, M., Mouret, H., Rollin, O., & Vaissière, B. E. (2014). Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One, 9(8), e104679. https://doi.org/10.1371/journal.pone.0104679
Fründ, J., Zieger, S. L., & Tscharntke, T. (2013). Response diversity of wild bees to overwintering temperatures. Oecologia, 173(4), 1639-1648. https://doi.org/10.1007/s00442-013-2729-1
Gérard, M., Vanderplanck, M., Wood, T., & Michez, D. (2020). Global warming and plant-pollinator mismatches. Emerging Topics in Life Sciences, https://doi.org/10.1042/ETLS20190139
Goldewijk, K. K., Beusen, A., van Drecht, G., & de Vos, M. (2011). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), 73-86. https://doi.org/10.1111/j.1466-8238.2010.00587.x
Goulson, D., Lye, G. C., & Darvill, B. (2008). Decline and conservation of bumble bees. Annual Review of Entomology, 53(1), 191-208. https://doi.org/10.1146/annurev.ento.53.103106.093454
Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957. https://doi.org/10.1126/science.1255957
Grab, H., Branstetter, M. G., Amon, N., Urban-Mead, K. R., Park, M. G., Gibbs, J., Blitzer, E. J., Poveda, K., Loeb, G., & Danforth, B. N. (2019). Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science, 363(6424), 282-284. https://doi.org/10.1126/science.aat6016
Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153(3), 589-596. https://doi.org/10.1007/s00442-007-0752-9
Hassall, C., Owen, J., & Gilbert, F. (2017). Phenological shifts in hoverflies (Diptera: Syrphidae): Linking measurement and mechanism. Ecography, 40(7), 853-863. https://doi.org/10.1111/ecog.02623
He, F., & Gaston, K. J. (2003). Occupancy, spatial variance, and the abundance of species. The American Naturalist, 162(3), 366-375. https://doi.org/10.1086/377190
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L., & Totland, Ø. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
Isaac, N. J. B., Girardello, M., Brereton, T. M., & Roy, D. B. (2011). Butterfly abundance in a warming climate: Patterns in space and time are not congruent. Journal of Insect Conservation, 15(1), 233-240. https://doi.org/10.1007/s10841-010-9340-0
Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P., & Roy, D. B. (2014). Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 5(10), 1052-1060. https://doi.org/10.1111/2041-210X.12254
Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London B: Biological Sciences, 274(1608), 303-313. https://doi.org/10.1098/rspb.2006.3721
Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 16812-16816. https://doi.org/10.1073/pnas.262413599
Kuussaari, M., Bommarco, R., Heikkinen, R. K., Helm, A., Krauss, J., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Rodà, F., Stefanescu, C., Teder, T., Zobel, M., & Steffan-Dewenter, I. (2009). Extinction debt: A challenge for biodiversity conservation. Trends in Ecology & Evolution, 24(10), 564-571. https://doi.org/10.1016/j.tree.2009.04.011
Larsen, T. H., Williams, N. M., & Kremen, C. (2005). Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology Letters, 8(5), 538-547. https://doi.org/10.1111/j.1461-0248.2005.00749.x
Le Féon, V., Schermann-Legionnet, A., Delettre, Y., Aviron, S., Billeter, R., Bugter, R., Hendrickx, F., & Burel, F. (2010). Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agriculture, Ecosystems & Environment, 137(1), 143-150. https://doi.org/10.1016/j.agee.2010.01.015
Luder, K., Knop, E., & Menz, M. H. M. (2018). Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. Diversity and Distributions, 24(7), 919-927. https://doi.org/10.1111/ddi.12735
Maria, D., Magurran, A. E., Buckland, S. T., Anne, C., Chazdon, R. L., Colwell, R. K., Tom, C., Gaston, K. J., Gotelli, N. J., Kosnik, M. A., Brian, M. G., McCune, J. L., Hélène, M., Mumby, P. J., Lise, Ø., Angelika, S., & Mark, V. (2013). Quantifying temporal change in biodiversity: Challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20121931. https://doi.org/10.1098/rspb.2012.1931
Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10(8), 710-717. https://doi.org/10.1111/j.1461-0248.2007.01061.x
Nieto, A., Roberts, S. P. M., Kemp, J., Rasmont, P., Kuhlmann, M., García Criado, M., Biesmeijer, J. C., Bogusch, P., Dathe, H. H., De la Rúa, P., De Meulemeester, T., Dehon, M., Dewulf, A., Ortiz-Sánchez, F. J., Lhomme, P., Pauly, A., Potts, S. G., Praz, C., Quaranta, M., … IUCN (International Union for Conservation of Nature). (2014). European red list of bees. Publications Office. Retrieved from http://bookshop.europa.eu/uri?target=EUB:NOTICE:KH0714078:EN:HTML
Ogilvie, J. E., Griffin, S. R., Gezon, Z. J., Inouye, B. D., Underwood, N., Inouye, D. W., & Irwin, R. E. (2017). Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecology Letters, 20(12), 1507-1515. https://doi.org/10.1111/ele.12854
Ollerton, J., Erenler, H., Edwards, M., & Crockett, R. (2014). Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346(6215), 1360-1362. https://doi.org/10.1126/science.1257259
Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321-326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2013). caper: Comparative Analyses of Phylogenetics and Evolution in R. Retrieved from https://CRAN.R-project.org/package=caper
Outhwaite, C. L., Chandler, R. E., Powney, G. D., Collen, B., Gregory, R. D., & Isaac, N. J. B. (2018). Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data. Ecological Indicators, 93, 333-343. https://doi.org/10.1016/j.ecolind.2018.05.010
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877-884. https://doi.org/10.1038/44766
Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E., & Danforth, B. N. (2015). Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proceedings of the Royal Society B: Biological Sciences, 282(1809), 20150299. https://doi.org/10.1098/rspb.2015.0299
Pickett, S. T. A. (1989). Space-for-time substitution as an alternative to long-term studies. In G. E. Likens (Ed.), Long-term studies in ecology: Approaches and alternatives (pp. 110-135). Springer. https://doi.org/10.1007/978-1-4615-7358-6_5
Pollard, E., & Yates, T. J. (1994). Monitoring butterflies for ecology and conservation: The British butterfly monitoring scheme. Springer Science & Business Media.
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353. https://doi.org/10.1016/j.tree.2010.01.007
Powney, G. D., Carvell, C., Edwards, M., Morris, R. K. A., Roy, H. E., Woodcock, B. A., & Isaac, N. J. B. (2019). Widespread losses of pollinating insects in Britain. Nature Communications, 10(1), 1018. https://doi.org/10.1038/s41467-019-08974-9
Rader, R., Bartomeus, I., Tylianakis, J. M., & Laliberté, E. (2014). The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Diversity and Distributions, 20(8), 908-917. https://doi.org/10.1111/ddi.12221
Rafael Valdovinos-Núñez, G., Quezada-Euán, J. J. G., Ancona-Xiu, P., Moo-Valle, H., Carmona, A., & Ruiz Sánchez, E. (2009). Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). Journal of Economic Entomology, 102(5), 1737-1742. https://doi.org/10.1603/029.102.0502
Rasmont, P., Franzen, M., Lecocq, T., Harpke, A., Roberts, S., Biesmeijer, K., Castro, L., Cederberg, B., Dvorak, L., Fitzpatrick, U., Gonseth, Y., Haubruge, E., Mahe, G., Manino, A., Michez, D., Neumayer, J., Odegaard, F., Paukkunen, J., Pawlikowski, T., … Schweiger, O. (2015). Climatic risk and distribution atlas of European bumblebees. Biodiversity and Ecosystem Risk Assessment, 10, 1-236. https://doi.org/10.3897/biorisk.10.4749
Roy, D. B., & Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology, 6(4), 407-416. https://doi.org/10.1046/j.1365-2486.2000.00322.x
Rudolf, V. H. W. (2019). The role of seasonal timing and phenological shifts for species coexistence. Ecology Letters, 22(8), 1324-1338. https://doi.org/10.1111/ele.13277
Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A., van der Linden, G. T. J., Schaminée, J. H. J., Siepel, H., & Kleijn, D. (2014). Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17552-17557. https://doi.org/10.1073/pnas.1412973111
Sgrò, C. M., Terblanche, J. S., & Hoffmann, A. A. (2016). What can plasticity contribute to insect responses to climate change? Annual Review of Entomology, 61(1), 433-451. https://doi.org/10.1146/annurev-ento-010715-023859
Soroye, P., Newbold, T., & Kerr, J. (2020). Climate change contributes to widespread declines among bumble bees across continents. Science, 367(6478), 685-688. https://doi.org/10.1126/science.aax8591
Storkey, J., Meyer, S., Still, K. S., & Leuschner, C. (2012). The impact of agricultural intensification and land-use change on the European arable flora. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1421-1429. https://doi.org/10.1098/rspb.2011.1686
Uhl, P., Franke, L. A., Rehberg, C., Wollmann, C., Stahlschmidt, P., Jeker, L., & Brühl, C. A. (2016). Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Scientific Reports, 6(1), 34439. https://doi.org/10.1038/srep34439
White, P., & Kerr, J. T. (2006). Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 29(6), 908-918. https://doi.org/10.1111/j.2006.0906-7590.04685.x
Willi, Y., Van Buskirk, J., & Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics, 37(1), 433-458. https://doi.org/10.1146/annurev.ecolsys.37.091305.110145
Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143(10), 2280-2291. https://doi.org/10.1016/j.biocon.2010.03.024
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G., & Aizen, M. A. (2009). A meta-analysis of bees' responses to anthropogenic disturbance. Ecology, 90(8), 2068-2076. https://doi.org/10.1890/08-1245.1
Zhai, S., Song, G., Qin, Y., Ye, X., & Lee, J. (2017). Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach. PLoS One, 12(9), e0184474. https://doi.org/10.1371/journal.pone.0184474

Auteurs

François Duchenne (F)

Institute of Ecology and Environmental Sciences of Paris (Sorbonne Université, CNRS, Université Paris Est Créteil, INRA, IRD), Paris, France.
Centre d'Ecologie et des Sciences de la Conservation (CNRS, MNHN, Sorbonne Université), Paris, France.

Elisa Thébault (E)

Institute of Ecology and Environmental Sciences of Paris (Sorbonne Université, CNRS, Université Paris Est Créteil, INRA, IRD), Paris, France.

Denis Michez (D)

Laboratory of Zoology, Research Institute of Biosciences (University of Mons), Mons, Belgium.

Maxence Gérard (M)

Laboratory of Zoology, Research Institute of Biosciences (University of Mons), Mons, Belgium.

Céline Devaux (C)

Institut des Sciences de l'Evolution de Montpellier, Montpellier (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France.

Pierre Rasmont (P)

Laboratory of Zoology, Research Institute of Biosciences (University of Mons), Mons, Belgium.

Nicolas J Vereecken (NJ)

Agroecology Lab, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Colin Fontaine (C)

Centre d'Ecologie et des Sciences de la Conservation (CNRS, MNHN, Sorbonne Université), Paris, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH