Exploring Manually Curated Annotations of Intrinsically Disordered Proteins with DisProt.
DisProt
community curation
database
intrinsically disordered proteins
literature curation
Journal
Current protocols in bioinformatics
ISSN: 1934-340X
Titre abrégé: Curr Protoc Bioinformatics
Pays: United States
ID NLM: 101157830
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
entrez:
5
10
2020
pubmed:
6
10
2020
medline:
2
9
2021
Statut:
ppublish
Résumé
DisProt is the major repository of manually curated data for intrinsically disordered proteins collected from the literature. Although lacking a stable tertiary structure under physiological conditions, intrinsically disordered proteins carry out a plethora of biological functions, some of them directly arising from their flexible nature. A growing number of scientific studies have been published during the last few decades in an effort to shed light on their unstructured state, their binding modes, and their functions. DisProt makes use of a team of expert biocurators to provide up-to-date annotations of intrinsically disordered proteins from the literature, making them available to the scientific community. Here we present a comprehensive description on how to use DisProt in different contexts and provide a detailed explanation of how to explore and interpret manually curated annotations of intrinsically disordered proteins. We describe how to search DisProt annotations, using both the web interface and the API for programmatic access. Finally, we explain how to visualize and interpret a DisProt entry, p53, a widely studied protein characterized by the presence of unstructured N-terminal and C-terminal regions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Performing a search in DisProt Support Protocol 1: Downloading options Support Protocol 2: Programmatic access with DisProt REST API Basic Protocol 2: Visualizing and interpreting DisProt entries: the p53 use case Basic Protocol 3: Providing feedback and submitting new intrinsic disorder-related data.
Substances chimiques
Intrinsically Disordered Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e107Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi: 10.1016/S0022-2836(05)80360-2.
Cumberworth, A., Lamour, G., Babu, M. M., & Gsponer, J. (2013). Promiscuity as a functional trait: Intrinsically disordered regions as central players of interactomes. Biochemical Journal, 454(3), 361-369. doi: 10.1042/BJ20130545.
Davey, N. E., Babu, M. M., Blackledge, M., Bridge, A., Capella-Gutierrez, S., Dosztanyi, Z., … Tosatto, S. C. E. (2019). An intrinsically disordered proteins community for ELIXIR. F1000Research, 8, ELIXIR-1753. doi: 10.12688/f1000research.20136.1.
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., … Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427-D432. doi: 10.1093/nar/gky995.
Hatos, A., Hajdu-Soltész, B., Monzon, A. M., Palopoli, N., Álvarez, L., Aykac-Fas, B., … Piovesan, D. (2020). DisProt: Intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 48(D1), D269-D276. doi: 10.1093/nar/gkz975.
Jones, S., & Thornton, J. M. (1996). Principles of protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 93(1), 13-20. doi: 10.1073/pnas.93.1.13.
Kobe, B., Guncar, G., Buchholz, R., Huber, T., Maco, B., Cowieson, N., … Forwood, J. K. (2008). Crystallography and protein-protein interactions: Biological interfaces and crystal contacts. Biochemical Society Transactions, 36(Pt 6), 1438-1441. doi: 10.1042/BST0361438.
Lewis, T. E., Sillitoe, I., Dawson, N., Lam, S. D., Clarke, T., Lee, D., … Lees, J. (2018). Gene3D: Extensive prediction of globular domains in proteins. Nucleic Acids Research, 46(D1), D435-D439. doi: 10.1093/nar/gkx1069.
Mészáros, B., Erdos, G., & Dosztányi, Z. (2018). IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Research, 46(W1), W329-W337. doi: 10.1093/nar/gky384.
Mészáros, B., Simon, I., & Dosztányi, Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5(5), e1000376. doi: 10.1371/journal.pcbi.1000376.
Mészáros, B., Simon, I., & Dosztányi, Z. (2011). The expanding view of protein-protein interactions: Complexes involving intrinsically disordered proteins. Physical Biology, 8(3), 035003. doi: 10.1088/1478-3975/8/3/035003.
Mészáros, B., Tompa, P., Simon, I., & Dosztányi, Z. (2007). Molecular principles of the interactions of disordered proteins. Journal of Molecular Biology, 372(2), 549-561. doi: 10.1016/j.jmb.2007.07.004.
Mizutani, H., Saraboji, K., Malathy Sony, S. M., Ponnuswamy, M. N., Kumarevel, T., Krishna Swamy, B. S., … Kunishima, N. (2008). Systematic study on crystal-contact engineering of diphthine synthase: Influence of mutations at crystal-packing regions on X-ray diffraction quality. Acta Crystallographica. Section D, Biological Crystallography, 64(Pt 10), 1020-1033. doi: 10.1107/S0907444908023019.
Okuda, M., & Nishimura, Y. (2014). Extended string binding mode of the phosphorylated transactivation domain of tumor suppressor p53. Journal of the American Chemical Society, 136(40), 14143-14152. doi: 10.1021/ja506351f.
Piovesan, D., Tabaro, F., Mičetić, I., Necci, M., Quaglia, F., Oldfield, C. J., … Tosatto, S. C. E. (2017). DisProt 7.0: A major update of the database of disordered proteins. Nucleic Acids Research, 45(D1), D219-D227. doi: 10.1093/nar/gkw1056.
Piovesan, D., Tabaro, F., Paladin, L., Necci, M., Micetic, I., Camilloni, C., … Tosatto, S. C. E. (2018). MobiDB 3.0: More annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Research, 46(D1), D471-D476. doi: 10.1093/nar/gkx1071.
Ptitsyn, O. B. (1995). Molten globule and protein folding. Advances in Protein Chemistry, 47, 83-229. doi: 10.1016/s0065-3233(08)60546-x.
Ptitsyn, O. B., Bychkova, V. E., & Uversky, V. N. (1995). Kinetic and equilibrium folding intermediates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 348(1323), 35-41. doi: 10.1098/rstb.1995.0043.
Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H., & UniProt Consortium (2015). UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6), 926-932. doi: 10.1093/bioinformatics/btu739.
Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27(10), 527-533. doi: 10.1016/s0968-0004(02)02169-2.
Tompa, P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Letters, 579(15), 3346-3354. doi: 10.1016/j.febslet.2005.03.072.
Tompa, P. (2009). Structure and function of intrinsically disordered proteins. Oxfordshire, UK: Taylor & Francis.
UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506-D515. doi: 10.1093/nar/gky1049.
Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et Biophysica Acta, 1804(6), 1231-1264. doi: 10.1016/j.bbapap.2010.01.017.
van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., … Babu, M. M. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114(13), 6589-6631. doi: 10.1021/cr400525m.
Wells, M., Tidow, H., Rutherford, T. J., Markwick, P., Jensen, M. R., Mylonas, E., … Fersht, A. R. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5762-5767. doi: 10.1073/pnas.0801353105.