Proteomic analysis of plasma exosomes from Cystic Echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers.
Journal
PLoS neglected tropical diseases
ISSN: 1935-2735
Titre abrégé: PLoS Negl Trop Dis
Pays: United States
ID NLM: 101291488
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
25
10
2019
accepted:
10
07
2020
entrez:
5
10
2020
pubmed:
6
10
2020
medline:
23
12
2020
Statut:
epublish
Résumé
The reference diagnostic method of human abdominal Cystic Echinococcosis (CE) is imaging, particularly ultrasound, supported by serology when imaging is inconclusive. However, current diagnostic tools are neither optimal nor widely available. The availability of a test detecting circulating biomarkers would considerably improve CE diagnosis and cyst staging (active vs inactive), as well as treatments and follow-up of patients. Exosomes are extracellular vesicles involved in intercellular communication, including immune system responses, and are a recognized source of biomarkers. With the aim of identifying potential biomarkers, plasma pools from patients infected by active or inactive CE, as well as from control subjects, were processed to isolate exosomes for proteomic label-free quantitative analysis. Results were statistically processed and subjected to bioinformatics analysis to define distinct features associated with parasite viability. First, a few parasite proteins were identified that were specifically associated with either active or inactive CE, which represent potential biomarkers to be validated in further studies. Second, numerous identified proteins of human origin were common to active and inactive CE, confirming an overlap of several immune response pathways. However, a subset of human proteins specific to either active or inactive CE, and central in the respective protein-protein interaction networks, were identified. These include the Src family kinases Src and Lyn, and the immune-suppressive cytokine TGF-β in active CE, and Cdc42 in inactive CE. The Src and Lyn Kinases were confirmed as potential markers of active CE in totally independent plasma pools. In addition, insights were obtained on immune response profiles: largely consistent with previous evidence, our observations hint to a Th1/Th2/regulatory immune environment in patients with active CE and a Th1/inflammatory environment with a component of the wound healing response in the presence of inactive CE. Of note, our results were obtained for the first time from the analysis of samples obtained in vivo from a well-characterized, large cohort of human subjects.
Identifiants
pubmed: 33017416
doi: 10.1371/journal.pntd.0008586
pii: PNTD-D-19-01800
pmc: PMC7535053
doi:
Substances chimiques
Biomarkers
0
Cytokines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0008586Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nat Rev Immunol. 2007 Dec;7(12):975-87
pubmed: 18007680
Mol Biochem Parasitol. 2000 Sep;110(1):171-6
pubmed: 10989155
Int J Parasitol. 2019 Dec;49(13-14):1029-1037
pubmed: 31734339
Immunity. 1997 Jul;7(1):69-81
pubmed: 9252121
Small GTPases. 2018 Mar 4;9(1-2):95-106
pubmed: 28135905
J Exp Med. 2002 Dec 16;196(12):1593-604
pubmed: 12486102
Adv Parasitol. 2017;96:159-257
pubmed: 28212789
Cold Spring Harb Perspect Biol. 2014 Oct 23;6(11):a022616
pubmed: 25341920
J Immunol. 1997 Jun 1;158(11):5507-13
pubmed: 9164974
Proteomics. 2013 Nov;13(22):3354-64
pubmed: 24115447
Adv Parasitol. 2017;95:315-493
pubmed: 28131365
Parasite Immunol. 2018 May;40(5):e12523
pubmed: 29518254
Cell Immunol. 2013 Mar;282(1):17-20
pubmed: 23665204
Immunity. 2018 Nov 20;49(5):801-818
pubmed: 30462997
Parasite Immunol. 2015 Jan;37(1):16-22
pubmed: 25319434
J Proteome Res. 2019 Feb 1;18(2):623-632
pubmed: 30450911
Korean J Parasitol. 2016 Aug;54(4):519-25
pubmed: 27658605
Clin Dev Immunol. 2012;2012:639362
pubmed: 22110535
Mol Cell Proteomics. 2009 Dec;8(12):2770-7
pubmed: 19767571
Front Immunol. 2018 Oct 12;9:2349
pubmed: 30369927
Parasite Immunol. 2017 Mar;39(3):
pubmed: 28130828
Front Cell Dev Biol. 2018 Feb 20;6:18
pubmed: 29515996
Osteoarthritis Cartilage. 2000 Jul;8(4):294-302
pubmed: 10903884
J Proteomics. 2012 Jun 27;75(12):3574-84
pubmed: 22516433
Annu Rev Biochem. 2007;76:629-45
pubmed: 17263661
Parasite Immunol. 2016 Mar;38(3):170-81
pubmed: 26683283
Immunity. 1995 Nov;3(5):549-60
pubmed: 7584145
Biochim Biophys Acta. 2013 Nov;1834(11):2317-25
pubmed: 23590876
J Biol Chem. 1957 May;226(1):497-509
pubmed: 13428781
Adv Healthc Mater. 2016 Oct;5(19):2555-2565
pubmed: 27570124
Front Immunol. 2018 Feb 12;9:90
pubmed: 29483904
J Infect. 2015 Mar;70(3):299-306
pubmed: 25444973
Cell Signal. 2005 Jan;17(1):11-6
pubmed: 15451020
Trends Parasitol. 2011 Jun;27(6):264-73
pubmed: 21376669
Parasite. 2002 Dec;9(4):351-6
pubmed: 12514950
Semin Immunol. 1998 Aug;10(4):299-307
pubmed: 9695186
Blood. 2011 Nov 10;118(19):5141-51
pubmed: 21937704
J Extracell Vesicles. 2014 Mar 25;3:
pubmed: 24678386
Nature. 2015 Nov 19;527(7578):329-35
pubmed: 26524530
BMB Rep. 2014 Oct;47(10):531-9
pubmed: 25104400
Trends Parasitol. 2020 Jan;36(1):1-4
pubmed: 31753546
J Extracell Vesicles. 2014 Dec 22;3:25040
pubmed: 25536932
BMC Infect Dis. 2014 Sep 09;14:492
pubmed: 25204575
Mol Biochem Parasitol. 2016 Jul;208(1):33-40
pubmed: 27297184
Acta Trop. 2010 Apr;114(1):1-16
pubmed: 19931502
Cell Immunol. 2016 Jan;299:14-22
pubmed: 26617281
Am J Trop Med Hyg. 2016 Aug 3;95(2):405-9
pubmed: 27273641
Am J Trop Med Hyg. 2018 Aug;99(2):375-379
pubmed: 29869600
PLoS One. 2012;7(9):e45974
pubmed: 23029346
NMR Biomed. 2008 Aug;21(7):734-54
pubmed: 18384178
Oncotarget. 2017 Jun 20;8(25):41717-41733
pubmed: 28402944
BMC Infect Dis. 2015 Oct 26;15:457
pubmed: 26503442
Mol Cell Biol. 2003 Feb;23(4):1316-33
pubmed: 12556491
Cell Death Differ. 2015 Jan;22(1):34-45
pubmed: 25236394
Trends Parasitol. 2011 May;27(5):204-13
pubmed: 21257348
Sci Rep. 2020 Jan 23;10(1):1039
pubmed: 31974468
Biol Chem. 2013 Oct;394(10):1253-62
pubmed: 23770532
Vet Parasitol. 2017 Mar 15;236:22-33
pubmed: 28288760
Mol Cell Proteomics. 2017 Oct;16(10):1801-1814
pubmed: 28798222
Int J Mol Sci. 2013 Mar 06;14(3):5338-66
pubmed: 23466882
PLoS Negl Trop Dis. 2014 Aug 14;8(8):e3057
pubmed: 25122222
Emerg Infect Dis. 2006 Feb;12(2):296-303
pubmed: 16494758
J Extracell Vesicles. 2015 May 14;4:27066
pubmed: 25979354
PLoS Negl Trop Dis. 2015 Nov 17;9(11):e0004209
pubmed: 26575186
J Extracell Vesicles. 2018 Mar 01;7(1):1440131
pubmed: 29535849
J Extracell Vesicles. 2018 Nov 23;7(1):1535750
pubmed: 30637094
Nat Commun. 2017 Aug 15;8(1):246
pubmed: 28811476
J Infect. 2018 Apr;76(4):406-416
pubmed: 29391143
PLoS Negl Trop Dis. 2016 Dec 19;10(12):e0005243
pubmed: 27992434
J Immunol. 2008 Jun 15;180(12):8057-65
pubmed: 18523269
Mol Immunol. 2004 Jul;41(6-7):631-43
pubmed: 15220000
PLoS Negl Trop Dis. 2018 Sep 6;12(9):e0006741
pubmed: 30188936
Immunology. 2005 Jul;115(3):296-304
pubmed: 15946247
Parasite Immunol. 2004 Jan;26(1):45-52
pubmed: 15198645
Parasit Vectors. 2016 Apr 28;9:243
pubmed: 27126135
Parasit Vectors. 2020 Mar 14;13(1):133
pubmed: 32171321
Mol Cell Proteomics. 2006 Jan;5(1):144-56
pubmed: 16219938
Mol Cancer Res. 2017 Jan;15(1):93-105
pubmed: 27760843
PLoS Negl Trop Dis. 2019 Jan 7;13(1):e0007032
pubmed: 30615613
EMBO Rep. 2015 Jan;16(1):24-43
pubmed: 25488940
Cell. 1995 Oct 20;83(2):301-11
pubmed: 7585947
Adv Parasitol. 2017;96:259-369
pubmed: 28212790
Cell Mol Life Sci. 2011 Aug;68(16):2667-88
pubmed: 21560073
J Proteomics. 2010 Sep 10;73(10):1907-20
pubmed: 20601276
Annu Rev Immunol. 2014;32:51-82
pubmed: 24313777
Lancet Infect Dis. 2018 Jul;18(7):769-778
pubmed: 29793823
Parasit Vectors. 2020 May 7;13(1):236
pubmed: 32381109