Modeling Mouse Soleus Muscle Contraction.
Journal
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
ISSN: 2694-0604
Titre abrégé: Annu Int Conf IEEE Eng Med Biol Soc
Pays: United States
ID NLM: 101763872
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
entrez:
6
10
2020
pubmed:
7
10
2020
medline:
24
10
2020
Statut:
ppublish
Résumé
Models of muscle contraction are typically based on a measured force-velocity relation embodied as Hill's contractile element [1]. Adopting a particular force-velocity relation dictates the muscle's mechanical properties. Dynamic crossbridge based models, such as Huxley's [2], typically focus on ultrastructural mechanics. This study adapts a dynamic lumped model of cardiac muscle contraction [3] for description of mouse soleus skeletal muscle. This compact, dynamic model exhibits the main features of skeletal muscle contraction with few assumptions. The main differences between cardiac and skeletal muscle dynamics are described. This approach gives one equation and set of parameters capable of modeling isometric and isotonic contractions, skeletal muscle's force-length relation, variations in contractility, and the force-velocity relation. This new constitutive equation may be useful for modeling striated muscle as part of larger biomechanical models.
Identifiants
pubmed: 33018470
doi: 10.1109/EMBC44109.2020.9176436
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM