Enhanced Stability and Emission Properties of Perylene Dyes by Surface Tethering: Preparation of Fluorescent Ru Nanoparticle Suspensions by Alkyne Linker Chemistry.
characterisation
fluorescence
nanoparticles
ruthenium
tethered alkynes
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
13 Jan 2021
13 Jan 2021
Historique:
received:
28
07
2020
revised:
25
09
2020
pubmed:
7
10
2020
medline:
7
10
2020
entrez:
6
10
2020
Statut:
ppublish
Résumé
Spherical ruthenium nanoparticles (NPs) with a narrow size distribution were synthesised in ethanol by a facile low-temperature solvothermal process without the assistance of templates, structure-directing agents or post annealing/reduction treatments. Surface passivation with a fluorescent perylene dye (EP), and with silane ligands (ETMS), both initially bearing alkyne groups and subsequently forming vinylidene linkages, provided stable suspensions of the marginally soluble free EP. Quantitative analysis of the suspension gave an estimated EP surface coverage of 15 %, corresponding to an EP/ETMS mole ratio of ≈1:6. Photophysical evaluation of the bound and free dye revealed similar absorption bands and extinction coefficients and improved properties for the bound state, including enhanced fluorescence in the visible range for the bound dye, an extended absorption range into the near-UV providing strong emission in the visible, and significantly improved photostability. The physical basis of the enhanced photophysical properties, potential routes to further improvements and the implications for applications are discussed.
Identifiants
pubmed: 33022835
doi: 10.1002/chem.202003514
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1023-1030Subventions
Organisme : Irish Research Council for Science, Engineering and Technology
ID : GOIPG/2015/3492
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : BEX 1418-15-7
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
N. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander, Chem. Rev. 2011, 111, 3913-3961.
Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60-103;
Angew. Chem. 2009, 121, 62-108.
X. Kong, K. Xu, C. Zhang, J. Dai, S. Norooz Oliaee, L. Li, X. Zeng, C. Wu, Z. Peng, ACS Catal. 2016, 6, 1487-1492.
W. Chen, N. B. Zuckerman, X. Kang, D. Ghosh, J. P. Konopelski, S. Chen, J. Phys. Chem. C 2010, 114, 18146-18152.
C. A. Berven, L. Clarke, J. L. Mooster, M. N. Wybourne, J. E. Hutchison, Adv. Mater. 2001, 13, 109-113.
W. Chen, S. Chen, Angew. Chem. Int. Ed. 2009, 48, 4386-4389;
Angew. Chem. 2009, 121, 4450-4453.
C. Mohr, H. Hofmeister, J. Radnik, P. Claus, J. Am. Chem. Soc. 2003, 125, 1905-1911.
M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, R. M. Lambert, Nature 2008, 454, 981-983.
H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, J. Am. Chem. Soc. 2005, 127, 9374-9375.
M. Zayats, A. B. Kharitonov, S. P. Pogorelova, O. Lioubashevski, E. Katz, I. Willner, J. Am. Chem. Soc. 2003, 125, 16006-16014.
P. Schwerdtfeger, Angew. Chem. Int. Ed. 2003, 42, 1892-1895;
Angew. Chem. 2003, 115, 1936-1939.
T. Huang, R. W. Murray, J. Phys. Chem. B 2001, 105, 12498-12502.
W. Chen, N. B. Zuckerman, J. P. Konopelski, S. Chen, Anal. Chem. 2010, 82, 461-465.
S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989-1992.
M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 1994, 801-802.
A. K. Agrawal, P. K. Sahu, S. Seth, M. Sarkar, J. Phys. Chem. C 2019, 123, 3836-3847.
I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435-446.
K. E. Sapsford, L. Berti, I. L. Medintz, Angew. Chem. Int. Ed. 2006, 45, 4562-4588;
Angew. Chem. 2006, 118, 4676-4704.
X. Zhang, Y. L. Chen, R. S. Liu, D. P. Tsai, Rep. Prog. Phys. 2013, 76, 046401-046441.
W. J. Youngblood, S. H. Anna Lee, K. Maeda, T. E. Mallouk, Acc. Chem. Res. 2009, 42, 1966-1973.
R. Shenhar, V. M. Rotello, Acc. Chem. Res. 2003, 36, 549-561.
W. Chen, J. R. Davies, D. Ghosh, M. C. Tong, J. P. Konopelski, S. Chen, Chem. Mater. 2006, 18, 5253-5259.
G. Yang, Q. Lin, C. Wang, J. Li, J. Wang, J. Zhou, Y. Wang, C. Wang, J. Nanosci. Nanotechnol. 2012, 12, 3766-3774.
H. S. Toh, K. Jurkschat, R. G. Compton, Chem. Eur. J. 2015, 21, 2998-3004.
G. Valluru, P. E. Georghiou, H. F. Sleem, F. Perret, I. Montasser, A. Grandvoinnet, L. Brolles, A. W. Coleman, Supramol. Chem. 2014, 26, 561-568.
Y. X. Tan, J. B. Liu, Q. Li, K. Q. Zhao, Jiegou Huaxue 2015, 34, 335-343.
T. Daimon, E. Nihei, Materials 2013, 6, 1704-1717.
A. A. Chistov, S. V. Kutyakov, A. V. Ustinov, I. O. Aparin, A. V. Glybin, I. V. Mikhura, V. A. Korshun, Tetrahedron Lett. 2016, 57, 1003-1005.
P. Hu, Y. Ren, L. Chen, F. Zhang, Y. Peng, H.-W. Lee, S. Chen, J. Nanopart. Res. 2018, 20, 184.
Y. Chen, K. Y. Liew, J. Li, Mater. Lett. 2008, 62, 1018-1021.
M. Zawadzki, J. Okal, Mater. Res. Bull. 2008, 43, 3111-3121.
T. Umegaki, Y. Enomoto, Y. Kojima, Catal. Sci. Technol. 2016, 6, 409-412.
S. U. Nandanwar, M. Chakraborty, S. Mukhopadhyay, K. T. Shenoy, Cryst. Res. Technol. 2011, 46, 393-399.
J. L. Mi, Y. Shen, J. Becker, M. Bremholm, B. B. Iversen, J. Phys. Chem. C 2014, 118, 11104-11110.
E. Morais, C. O'Modhrain, K. R. Thampi, J. A. Sullivan, Int. J. Photoenergy 2019, 2019, 1-10.
F. Zhang, J. Fang, L. Huang, W. Sun, Z. Lin, Z. Shi, X. Kang, S. Chen, ACS Catal. 2019, 9, 98-104.
J. J. Kelley, University of Dayton (USA), 2018.
X. Kang, N. B. Zuckerman, J. P. Konopelski, S. Chen, J. Am. Chem. Soc. 2012, 134, 1412-1415.
P. Hu, L. Chen, C. P. Deming, L. W. Bonny, H. W. Lee, S. Chen, Chem. Commun. 2016, 52, 11631-11633.
R. M. Silverstein, G. Bassler, T. Morrill, Spectrometric Identification of Organic Compounds, 7th ed., Wiley, Hoboken, 2005.
D. G. Creighton, J. A. Eadon, J. Chem. Soc. Faraday Trans 1991, 87, 3881.
P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578-1586.
A. Alam, S. Dehm, F. Hennrich, Y. Zakharko, A. Graf, M. Pfohl, I. M. Hossain, M. M. Kappes, J. Zaumseil, R. Krupke, B. S. Flavel, Nanoscale 2017, 9, 11205-11213.
I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232-11235;
Angew. Chem. 2014, 126, 11414-11417.
S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372-7408;
Angew. Chem. 2013, 125, 7516-7557.
W. Chen, N. B. Zuckerman, J. W. Lewis, J. P. Konopelski, S. Chen, J. Phys. Chem. C 2009, 113, 16988-16995.
J. Zhang, J. Malicka, I. Gryczynski, J. R. Lakowicz, J. Phys. Chem. B 2005, 109, 7643-7648.
K. S. Kim, S. Il Yoo, B. H. Sohn, Macromol. Chem. Phys. 2018, 219, 1800115.