Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
15
01
2020
accepted:
17
09
2020
revised:
09
09
2020
pubmed:
8
10
2020
medline:
22
4
2021
entrez:
7
10
2020
Statut:
ppublish
Résumé
Plant microbiomes have important roles in plant health and productivity. However, despite flowers being directly linked to reproductive outcomes, little is known about the microbiomes of flowers and their potential interaction with pathogen infection. Here, we investigated the temporal spatial dynamics of the apple stigma microbiome when challenged with a phytopathogen Erwinia amylovora, the causal agent of fire blight disease. We profiled the microbiome from the stigmas of individual flowers, greatly increasing the resolution at which we can characterize shifts in the composition of the microbiome. Individual flowers harbored unique microbiomes at the operational taxonomic unit level. However, taxonomic analysis of community succession showed a population gradually dominated by bacteria within the families Enterobacteriaceae and Pseudomonadaceae. Flowers inoculated with E. amylovora established large populations of the phytopathogen, with pathogen-specific gene counts of >3.0 × 10
Identifiants
pubmed: 33024293
doi: 10.1038/s41396-020-00784-y
pii: 10.1038/s41396-020-00784-y
pmc: PMC7853089
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
318-329Références
Aleklett K, Hart M, Shade A. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany. 2014;92:253–66.
Shade A, McManus PS, Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. MBio. 2013;4:e00602–12.
pubmed: 23443006
pmcid: 3585449
Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler‐Plaum R, Cardinale M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species‐specificity. Environ Microbiol. 2016;18:5161–74.
pubmed: 27612299
Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc R Soc B: Biol Sci. 2014;281:20132637.
Pusey PL, Rudell DR, Curry EA, Mattheis JP. Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience. 2008;43:1471–8.
Stockwell V, McLaughlin R, Henkels M, Loper J, Sugar D, Roberts R. Epiphytic colonization of pear stigmas and hypanthia by bacteria during primary bloom. Phytopathology. 1999;89:1162–8.
pubmed: 18944640
Steven B, Huntley RB, Zeng Q. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes. 2018;2:171–9.
Norelli JL, Jones AL, Aldwinckle HS. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 2003;87:756–65.
pubmed: 30812883
Thomson S, Wagner A, Gouk S, editors. Rapid epiphytic colonization of apple flowers and the role of insects and rain. VIII International Workshop on Fire Blight. vol 489. ISHS Acta Horticulturae; Kusadasi, Turkey. 1998.
Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology. 2009;99:571–81.
pubmed: 19351253
Sinclair L, Osman OA, Bertilsson S, Eiler A. Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE. 2015;10:e0116955.
pubmed: 25647581
pmcid: 4315398
Pirc M, Ravnikar M, Tomlinson J, Dreo T. Improved fireblight diagnostics using quantitative real‐time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol. 2009;58:872–81.
Cui Z, Yuan X, Yang C-H, Huntley RB, Sun W, Wang J, et al. Development of a method to monitor gene expression in single bacterial cells during the interaction with plants and use to study the expression of the type III secretion system in single cells of Dickeya dadantii in potato. Front Microbiol. 2018;9:1429.
pubmed: 30002651
pmcid: 6031750
Schloss PD, W S, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
pubmed: 19801464
pmcid: 2786419
Rognes T, F T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
pubmed: 27781170
pmcid: 5075697
Westcott SL, S P. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. MSphere. 2017;2:e00073–17.
pubmed: 28289728
pmcid: 5343174
Quast C, P E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.
pubmed: 3531112
pmcid: 3531112
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
pubmed: 1950982
pmcid: 1950982
Dixon P. VEGAN, a package of R functions for community ecology. J Vegetation Sci. 2003;14:927–30.
Wickham H. ggplot2: elegant graphics for data analysis. Springer; New York. 2016.
Palacio-Bielsa A, R M, Llop P, López MM. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees. 2012;26:13–29.
Kube M, M A, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K. The genome of Erwinia tasmaniensis strain Et1/99, a non‐pathogenic bacterium in the genus Erwinia. Environ Microbiol. 2008;10:2211–22.
pubmed: 18462403
Geider K, A G, Du Z, Jakovljevic V, Jock S, Völksch B. Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evolut Microbiol. 2006;56:2937–43.
Thomson S. The role of the stigma in fire blight infections. Phytopathology. 1986;76:476–82.
Johnson KB, S V. Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol. 1998;36:227–48.
pubmed: 15012499
Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.
pubmed: 22564542
Albrecht M, Padrón B, Bartomeus I, Traveset A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc R Soc B: Biol Sci. 2014;281:20140773.
Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell. 2004;16:S84–S97.
pubmed: 15075396
pmcid: 2643401
Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Environ Microbiol Rep. 2012;4:97–104.
pubmed: 23757235
Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q. Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem. 2015;89:206–9.
Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil. 2002;246:167–74.
Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol. 2005;20:634–41.
pubmed: 16701447
Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.
pubmed: 30072533
pmcid: 6405290
Pusey P, Stockwell V, Reardon C, Smits T, Duffy B. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology. 2011;101:1234–41.
pubmed: 21679036
Herrera CM. Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology. 1995;76:1516–24.
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–41.
pubmed: 22363001
pmcid: 3564547
Hamdan-Partida A, González-García S, de la Rosa García E, Bustos-Martínez J. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat. Int J Med Microbiol. 2018;308:469–75.
pubmed: 29661650
Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001;9:605–10.
pubmed: 11728874
Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344:11–6.
Paetzold B, Willis JR, de Lima JP, Knödlseder N, Brüggemann H, Quist SR, et al. Skin microbiome modulation induced by probiotic solutions. Microbiome. 2019;7:95.
pubmed: 31234928
pmcid: 6591853
Trosvik P, Stenseth NC, Rudi K. Convergent temporal dynamics of the human infant gut microbiota. ISME J. 2010;4:151.
pubmed: 19710708
Shenhav L, Furman O, Briscoe L, Thompson M, Silverman JD, Mizrahi I, et al. Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Comput Biol. 2019;15:e1006960.
pubmed: 31246943
pmcid: 6597035
Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M. The colonization dynamics of the gut microbiota in tilapia larvae. PLoS ONE. 2014;9:e103641.
pubmed: 25072852
pmcid: 4114968
Booijink CC, El‐Aidy S, Rajilić‐Stojanović M, Heilig HG, Troost FJ, Smidt H, et al. High temporal and inter‐individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12:3213–27.
pubmed: 20626454
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5:4500.
pubmed: 25072318
pmcid: 4279269
Colman DR, Toolson EC, Takacs‐Vesbach C. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012;21:5124–37.
pubmed: 22978555
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027.
pubmed: 17183312
Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.
pubmed: 19508720
pmcid: 2702274
Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318:812–4.
pubmed: 17975068