Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy.
LMNB1
LMNB2
laminopathy
neurodevelopmental disorder
primary microcephaly
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
29
06
2020
accepted:
17
09
2020
revised:
14
09
2020
pubmed:
10
10
2020
medline:
4
6
2021
entrez:
9
10
2020
Statut:
ppublish
Résumé
Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined. We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes. Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments. We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation.
Identifiants
pubmed: 33033404
doi: 10.1038/s41436-020-00980-3
pii: S1098-3600(21)02540-5
pmc: PMC7862057
doi:
Substances chimiques
Lamin Type B
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
408-414Subventions
Organisme : Medical Research Council
ID : U127580972
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_EX_MR/M009203/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_16035
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00007/5
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S006753/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M02122X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M009203/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_14089
Pays : United Kingdom
Investigateurs
J C Ambrose
(JC)
P Arumugam
(P)
E L Baple
(EL)
M Bleda
(M)
F Boardman-Pretty
(F)
J M Boissiere
(JM)
C R Boustred
(CR)
H Brittain
(H)
M J Caulfield
(MJ)
G C Chan
(GC)
C E H Craig
(CEH)
L C Daugherty
(LC)
A de Burca
(A)
A Devereau
(A)
G Elgar
(G)
R E Foulger
(RE)
T Fowler
(T)
P Furió-Tarí
(P)
A Giess
(A)
J M Hackett
(JM)
D Halai
(D)
A Hamblin
(A)
S Henderson
(S)
J E Holman
(JE)
T J P Hubbard
(TJP)
K Ibáñez
(K)
R Jackson
(R)
L J Jones
(LJ)
D Kasperaviciute
(D)
M Kayikci
(M)
A Kousathanas
(A)
L Lahnstein
(L)
K Lawson
(K)
S E A Leigh
(SEA)
I U S Leong
(IUS)
F J Lopez
(FJ)
F Maleady-Crowe
(F)
J Mason
(J)
E M McDonagh
(EM)
L Moutsianas
(L)
M Mueller
(M)
N Murugaesu
(N)
A C Need
(AC)
C A Odhams
(CA)
A Orioli
(A)
C Patch
(C)
D Perez-Gil
(D)
M B Pereira
(MB)
D Polychronopoulos
(D)
J Pullinger
(J)
T Rahim
(T)
A Rendon
(A)
P Riesgo-Ferreiro
(P)
T Rogers
(T)
M Ryten
(M)
K Savage
(K)
K Sawant
(K)
R H Scott
(RH)
A Siddiq
(A)
A Sieghart
(A)
D Smedley
(D)
K R Smith
(KR)
S C Smith
(SC)
A Sosinsky
(A)
W Spooner
(W)
H E Stevens
(HE)
A Stuckey
(A)
R Sultana
(R)
M Tanguy
(M)
E R A Thomas
(ERA)
S R Thompson
(SR)
C Tregidgo
(C)
A Tucci
(A)
E Walsh
(E)
S A Watters
(SA)
M J Welland
(MJ)
E Williams
(E)
K Witkowska
(K)
S M Wood
(SM)
M Zarowiecki
(M)
Références
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84:131–164.
doi: 10.1146/annurev-biochem-060614-034115
Worman HJ. Nuclear lamins and laminopathies. J Pathol. 2012;226:316–325.
doi: 10.1002/path.2999
Padiath QS, Saigoh K, Schiffmann R, et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet. 2006;38:1114–1123.
doi: 10.1038/ng1872
Damiano JA, Afawi Z, Bahlo M, et al. Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia. Hum Mol Genet. 2015;24:4483–4490.
doi: 10.1093/hmg/ddv171
Hegele RA, Cao H, Liu DM, et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet. 2006;79:383–389.
doi: 10.1086/505885
Verloes A, Drunat S, Gressens P, Passemard S. Primary autosomal recessive microcephalies and Seckel syndrome spectrum disorders—archived chapter, for historical reference only. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews. Seattle: University of Washington; 1993.
Thornton GK, Woods CG. Primary microcephaly: do all roads lead to Rome? Trends Genet. 2009;25:501–510.
doi: 10.1016/j.tig.2009.09.011
Fitzgerald TW, Gerety SS, Jones WD, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–228.
doi: 10.1038/nature14135
Strelkov SV, Schumacher J, Burkhard P, Aebi U, Herrmann H. Crystal structure of the human Lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J Mol Biol. 2004;343:1067–1080.
doi: 10.1016/j.jmb.2004.08.093
Ahn J, Jo I, Kang S, et al. Structural basis for lamin assembly at the molecular level. Nat Commun. 2019;10:3757.
doi: 10.1038/s41467-019-11684-x
Dittmer T, Misteli T. The lamin protein family. Genome Biol. 2011;12:1–14.
doi: 10.1186/gb-2011-12-5-222
Bank EM, Ben-Harush K, Wiesel-Motiuk N, et al.A laminopathic mutation disrupting lamin filament assembly causes disease-like phenotypes in Caenorhabditis elegans. Mol Biol Cell. 2011;22:2716–2728.
doi: 10.1091/mbc.e11-01-0064
Hübner S, Eam JE, Wagstaff KM, Jans DA. Quantitative analysis of localization and nuclear aggregate formation induced by GFP-lamin A mutant proteins in living HeLa cells. J Cell Biochem. 2006;98:810–826.
doi: 10.1002/jcb.20791
Steele-Stallard HB, Pinton L, Sarcar S, et al. Modeling skeletal muscle laminopathies using human induced pluripotent stem cells carrying pathogenic LMNA mutations. Front Physiol. 2018;9:1332.
doi: 10.3389/fphys.2018.01332
Bond J, Roberts E, Mochida GH, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet. 2002;32:316–320.
doi: 10.1038/ng995
Shaheen R, Maddirevula S, Ewida N. Genomic and phenotypic delineation of congenital microcephaly. Genet Med. 2019;21:545–552.
doi: 10.1038/s41436-018-0140-3
Kim Y, Sharov AA, McDole K, et al. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science. 2011;334:1706–1710.
doi: 10.1126/science.1211222
Coffinier C, Chang SY, Nobumori C, et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci U S A. 2010;107:5076–5081.
doi: 10.1073/pnas.0908790107
Muchir A, Medioni J, Laluc M, et al. Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve. 2004;30:444–450.
doi: 10.1002/mus.20122
Bergendahl LT, Gerasimavicius L, Miles J, et al. The role of protein complexes in human genetic disease. Protein Sci. 2019;28:1400–1411.
doi: 10.1002/pro.3667
Tsai M-Y, Wang S, Heidinger JM, et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science. 2006;311:1887–1893.
doi: 10.1126/science.1122771
Zwerger M, Jaalouk DE, Lombardi ML, et al. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet. 2013;22:2335–2349.
doi: 10.1093/hmg/ddt079
Chen NY, Yang Y, Weston TA, et al. An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. Proc Natl Acad Sci U S A. 2019;116:25870–25879.
doi: 10.1073/pnas.1917225116
Rosti RO, Sotak BN, Bielas SL, et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway–Mowat syndrome. J Med Genet. 2017;54:399–403.
doi: 10.1136/jmedgenet-2016-104237
Fujita A, Tsukaguchi H, Koshimizu E, et al. Homozygous splicing mutation in NUP133 causes Galloway–Mowat syndrome. Ann Neurol. 2018;84:814–828.
doi: 10.1002/ana.25370
Shamseldin HE, Makhseed N, Ibrahim N, et al. NUP214 deficiency causes severe encephalopathy and microcephaly in humans. Hum Genet. 2019;138:221–229.
doi: 10.1007/s00439-019-01979-w
Fichtman B, Harel T, Biran N, et al. Pathogenic variants in NUP214 cause “plugged” nuclear pore channels and acute febrile encephalopathy. Am J Hum Genet. 2019;105:48–64.
doi: 10.1016/j.ajhg.2019.05.003