Modulation of cognition and neuronal plasticity in gain- and loss-of-function mouse models of the schizophrenia risk gene Tcf4.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
09 10 2020
Historique:
received: 25 03 2020
accepted: 21 08 2020
revised: 12 08 2020
entrez: 10 10 2020
pubmed: 11 10 2020
medline: 22 6 2021
Statut: epublish

Résumé

The transcription factor TCF4 was confirmed in several large genome-wide association studies as one of the most significant schizophrenia (SZ) susceptibility genes. Transgenic mice moderately overexpressing Tcf4 in forebrain (Tcf4tg) display deficits in fear memory and sensorimotor gating. As second hit, we exposed Tcf4tg animals to isolation rearing (IR), chronic social defeat (SD), enriched environment (EE), or handling control (HC) conditions and examined mice with heterozygous deletion of the exon 4 (Tcf4Ex4δ

Identifiants

pubmed: 33037178
doi: 10.1038/s41398-020-01026-7
pii: 10.1038/s41398-020-01026-7
pmc: PMC7547694
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

343

Références

Quednow, B. B., Brzózka, M. M. & Rossner, M. J. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol. Life Sci. CMLS 71, 2815–2835 (2014).
pubmed: 24413739 doi: 10.1007/s00018-013-1553-4
Kharbanda, M. et al. Partial deletion of TCF4 in three generation family with non-syndromic intellectual disability, without features of Pitt-Hopkins syndrome. Eur. J. Med. Genet. 59, 310–314 (2016).
pubmed: 27132474 doi: 10.1016/j.ejmg.2016.04.003
Sepp, M., Kannike, K., Eesmaa, A., Urb, M. & Timmusk, T. functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5’ exon usage and splicing. PloS ONE 6, e22138 (2011).
pubmed: 21789225 pmcid: 3137626 doi: 10.1371/journal.pone.0022138
Amiel, J. et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am. J. Hum. Genet. 80, 988–993 (2007).
pubmed: 17436254 pmcid: 1852736 doi: 10.1086/515582
Sweatt, J. D. Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp. Mol. Med. 45, e21 (2013).
pubmed: 23640545 pmcid: 3674405 doi: 10.1038/emm.2013.32
Zweier, C. et al. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am. J. Hum. Genet. 80, 994–1001 (2007).
pubmed: 17436255 pmcid: 1852727 doi: 10.1086/515583
Whalen, S. et al. Novel comprehensive diagnostic strategy in Pitt-Hopkins syndrome: clinical score and further delineation of the TCF4 mutational spectrum. Hum. Mutat. 33, 64–72 (2012).
pubmed: 22045651 doi: 10.1002/humu.21639
Zhuang, Y., Cheng, P. & Weintraub, H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol. Cell Biol. 16, 2898–2905 (1996).
pubmed: 8649400 pmcid: 231283 doi: 10.1128/MCB.16.6.2898
Kennedy, A. J. et al. Tcf4 regulates synaptic plasticity, DNA methylation, and memory function. Cell Rep. 16, 2666–2685 (2016).
pubmed: 27568567 pmcid: 5710002 doi: 10.1016/j.celrep.2016.08.004
Kalscheuer, V. M. et al. Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt-Hopkins syndrome. Am. J. Med. Genet. A 146A, 2053–2059 (2008).
pubmed: 18627065 doi: 10.1002/ajmg.a.32419 pmcid: 18627065
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656 pmcid: 5918692 doi: 10.1038/s41588-018-0059-2
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).
doi: 10.1038/ng.940
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
pmcid: 4112379 doi: 10.1038/nature13595
Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).
pubmed: 19571808 pmcid: 3077530 doi: 10.1038/nature08186
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0326-7 (2019).
Wray, N. R. et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol. Psychiatry 17, 36–48 (2012).
pubmed: 21042317 doi: 10.1038/mp.2010.109 pmcid: 21042317
Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).
pubmed: 21490598 pmcid: 3392969 doi: 10.1038/nature09915
Wirgenes, K. V. et al. TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl. Psychiatry 2, e112 (2012).
pubmed: 22832956 pmcid: 3365258 doi: 10.1038/tp.2012.39
Guella, I. et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J. Psychiatr. Res. 47, 1215–1221 (2013).
pubmed: 23786914 pmcid: 3753093 doi: 10.1016/j.jpsychires.2013.05.021
Mudge, J. et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PloS ONE 3, e3625 (2008).
pubmed: 18985160 pmcid: 2576459 doi: 10.1371/journal.pone.0003625
Brzózka, M. M. & Rossner, M. J. Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav. Brain Res. 237, 348–356 (2013).
pubmed: 23069005 doi: 10.1016/j.bbr.2012.10.001 pmcid: 23069005
Brzózka, M. M., Radyushkin, K., Wichert, S. P., Ehrenreich, H. & Rossner, M. J. Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol. Psychiatry 68, 33–40 (2010).
pubmed: 20434134 doi: 10.1016/j.biopsych.2010.03.015 pmcid: 20434134
Brzózka, M. M., Rossner, M. J., de Hoz, L. Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm. Eur. Arch. Psychiatry Clin. Neurosci. https://doi.org/10.1007/s00406-015-0643-8 (2015).
Sepp, M. et al. The intellectual disability and schizophrenia associated transcription factor TCF4 Is regulated by neuronal activity and protein kinase A. J. Neurosci. J. Soc. Neurosci. 37, 10516–10527 (2017).
doi: 10.1523/JNEUROSCI.1151-17.2017
D’Rozario, M. et al. Type I bHLH proteins daughterless and Tcf4 restrict neurite branching and synapse formation by repressing neurexin in postmitotic neurons. Cell Rep. 15, 386–397 (2016).
pubmed: 27050508 pmcid: 4946342 doi: 10.1016/j.celrep.2016.03.034
Rannals, M. D. et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a KCNQ1. Neuron 90, 43–55 (2016).
pubmed: 26971948 pmcid: 4824652 doi: 10.1016/j.neuron.2016.02.021
Page, S. C. et al. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Mol. Psychiatry, https://doi.org/10.1038/mp.2017.37 (2017).
Li, H. et al. Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. Mol. Psychiatry 24, 1235–1246 (2019).
pubmed: 30705426 doi: 10.1038/s41380-019-0353-0 pmcid: 30705426
Albanna, A. et al. TCF4 gene polymorphism and cognitive performance in patients with first episode psychosis. Schizophr. Res. 152, 124–129 (2014).
pubmed: 24275585 doi: 10.1016/j.schres.2013.10.038 pmcid: 24275585
Lennertz, L. et al. Novel schizophrenia risk gene TCF4 influences verbal learning and memory functioning in schizophrenia patients. Neuropsychobiology 63, 131–136 (2011).
pubmed: 21228604 doi: 10.1159/000317844
van Os, J. & Kapur, S. Schizophrenia. Lancet 374, 635–645 (2009).
pubmed: 19700006 doi: 10.1016/S0140-6736(09)60995-8
Tost, H. & Meyer-Lindenberg, A. Puzzling over schizophrenia: schizophrenia, social environment and the brain. Nat. Med 18, 211–213 (2012).
pubmed: 22310688 doi: 10.1038/nm.2671
Quednow, B. B. et al. Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. Proc. Natl Acad. Sci. USA 109, 6271–6276 (2012).
pubmed: 22451930 doi: 10.1073/pnas.1118051109
Adamcio, B., Havemann-Reinecke, U. & Ehrenreich, H. Chronic psychosocial stress in the absence of social support induces pathological pre-pulse inhibition in mice. Behav. Brain Res 204, 246–249 (2009).
pubmed: 19482043 doi: 10.1016/j.bbr.2009.05.030
Badowska, D. M., Brzózka, M. M., Chowdhury, A., Malzahn, D. & Rossner M. J. Data calibration and reduction allows to visualize behavioural profiles of psychosocial influences in mice towards clinical domains. Eur. Arch. Psychiatry Clin. Neurosci. 1–14 (2014).
Fox, C., Merali, Z. & Harrison, C. Therapeutic and protective effect of environmental enrichment against psychogenic and neurogenic stress. Behav. Brain Res. 175, 1–8 (2006).
pubmed: 16970997 doi: 10.1016/j.bbr.2006.08.016
Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006).
pubmed: 16924259 pmcid: 16924259 doi: 10.1038/nrn1970
Valzelli, L. The ‘isolation syndrome’ in mice. Psychopharmacologia 31, 305–320 (1973).
pubmed: 4582344 doi: 10.1007/BF00421275
Selten, J.-P. & Cantor-Graae, E. Social defeat: risk factor for schizophrenia? Br. J. Psychiatry J. Ment. Sci. 187, 101–102 (2005).
doi: 10.1192/bjp.187.2.101
Holtzman, C. W. et al. Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience 249, 172–191 (2013).
pubmed: 23298853 pmcid: 23298853 doi: 10.1016/j.neuroscience.2012.12.017
Burgalossi, A. et al. Analysis of neurotransmitter release mechanisms by photolysis of caged Ca
pubmed: 22722370 doi: 10.1038/nprot.2012.074 pmcid: 22722370
Agarwal, A. et al. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity. Cell Rep. https://doi.org/10.1016/j.celrep.2014.07.026 (2014).
Gray, E. G. & Whittaker, V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79–88 (1962).
pubmed: 13901297 pmcid: 1244174
Biesemann, C. et al. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J. 33, 157–170 (2014).
pubmed: 24413018 pmcid: 3989609 doi: 10.1002/embj.201386120
Maccarrone, G., Turck, C. W. & Martins-de-Souza, D. Shotgun mass spectrometry workflow combining IEF and LC-MALDI-TOF/TOF. Protein J. 29, 99–102 (2010).
pubmed: 20091422 pmcid: 2836250 doi: 10.1007/s10930-009-9227-7
Sepp, M., Pruunsild, P. & Timmusk, T. Pitt–Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. Hum. Mol. Genet. https://doi.org/10.1093/hmg/dds112 (2012).
Anderzhanova, E., Kirmeier, T. & Wotjak, C. T. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol. Stress 7, 47–56 (2017).
pubmed: 28377991 pmcid: 5377486 doi: 10.1016/j.ynstr.2017.03.003
McAlonan, K. & Brown, V. J. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav. Brain Res. 146, 97–103 (2003).
pubmed: 14643463 doi: 10.1016/j.bbr.2003.09.019 pmcid: 14643463
Murray, G. K. et al. Reinforcement and reversal learning in first-episode psychosis. Schizophr. Bull. 34, 848–855 (2008).
pubmed: 18628272 pmcid: 2518639 doi: 10.1093/schbul/sbn078
Willig, K. I. et al. Nanoscopy of filamentous actin in cortical dendrites of a living mouse. Biophys. J. 106, L01–L03 (2014).
pubmed: 24411266 pmcid: 3907229 doi: 10.1016/j.bpj.2013.11.1119
O’Tuathaigh, C. M. P., Moran, P. M. & Waddington, J. L. Genetic models of schizophrenia and related psychotic disorders: progress and pitfalls across the methodological ‘minefield’. Cell Tissue Res. 354, 247–257 (2013).
pubmed: 23715722 doi: 10.1007/s00441-013-1652-4 pmcid: 23715722
Burrows, E. L. & Hannan, A. J. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biol. Psychol. 116, 82–89 (2016).
pubmed: 26687973 doi: 10.1016/j.biopsycho.2015.11.015 pmcid: 26687973
Ma, C., Gu, C., Huo, Y., Li, X. & Luo, X.-J. The integrated landscape of causal genes and pathways in schizophrenia. Transl. Psychiatry 8, 67 (2018).
pubmed: 29540662 pmcid: 5851982 doi: 10.1038/s41398-018-0114-x
Kurian, S. M. et al. Identification of blood biomarkers for psychosis using convergent functional genomics. Mol. Psychiatry 16, 37–58 (2011).
pubmed: 19935739 doi: 10.1038/mp.2009.117 pmcid: 19935739
Mossakowska-Wójcik, J., Orzechowska, A., Talarowska, M., Szemraj, J. & Gałecki, P. The importance of TCF4 gene in the etiology of recurrent depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 80, 304–308 (2018).
pubmed: 28341444 doi: 10.1016/j.pnpbp.2017.03.014 pmcid: 28341444
Thaxton, C. et al. Common pathophysiology in multiple mouse models of Pitt-Hopkins syndrome. J. Neurosci. J. Soc. Neurosci. 38, 918–936 (2018).
doi: 10.1523/JNEUROSCI.1305-17.2017
Crux, S., Herms, J. & Dorostkar, M. M. Tcf4 regulates dendritic spine density and morphology in the adult brain. PloS ONE 13, e0199359 (2018).
pubmed: 29933371 pmcid: 6014661 doi: 10.1371/journal.pone.0199359
Jung, M. et al. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons. Mol. Autism 9, 20 (2018).
pubmed: 29588831 pmcid: 5863811 doi: 10.1186/s13229-018-0200-1
Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810 (2012).
pubmed: 23080416 doi: 10.1038/nrn3353 pmcid: 23080416
Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10831–10836 (2002).
pubmed: 12136127 doi: 10.1073/pnas.152343099 pmcid: 12136127
Hulme, S. R., Jones, O. D. & Abraham, W. C. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci. 36, 353–362 (2013).
pubmed: 23602195 doi: 10.1016/j.tins.2013.03.007 pmcid: 23602195

Auteurs

D M Badowska (DM)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.

M M Brzózka (MM)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.

N Kannaiyan (N)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.

C Thomas (C)

Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.

P Dibaj (P)

Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.

A Chowdhury (A)

Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.

H Steffens (H)

Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.

C W Turck (CW)

Max Planck Institute of Psychiatry, Proteomics Unit, Munich, Germany.

P Falkai (P)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.

A Schmitt (A)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.

S Papiol (S)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.

V Scheuss (V)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany.

K I Willig (KI)

Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.
Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.

D Martins-de-Souza (D)

Max Planck Institute of Psychiatry, Proteomics Unit, Munich, Germany.
University of Campinas, Institute of Biology, Dept of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Campinas, Brazil.

J S Rhee (JS)

Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.

D Malzahn (D)

Georg-August-University, University Medical Center Göttingen, Department of Genetic Epidemiology, Göttingen, Germany.
mzBiostatistics, Statistical Consultancy, Göttingen, Germany.

M J Rossner (MJ)

Ludwig Maximillian's University, Department of Psychiatry, Laboratory of Molecular Neurobiology, Munich, Germany. Moritz.Rossner@med.uni-muenchen.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH