Chemotherapy-induced grey matter abnormalities in cancer survivors: a voxel-wise neuroimaging meta-analysis.


Journal

Brain imaging and behavior
ISSN: 1931-7565
Titre abrégé: Brain Imaging Behav
Pays: United States
ID NLM: 101300405

Informations de publication

Date de publication:
Aug 2021
Historique:
received: 12 07 2019
accepted: 15 09 2020
revised: 21 07 2020
pubmed: 14 10 2020
medline: 7 9 2021
entrez: 13 10 2020
Statut: ppublish

Résumé

Findings regarding chemotherapy-induced grey matter abnormalities are heterogeneous, and no meta-analysis has quantitatively assessed brain structural alterations in cancer survivors treated with chemotherapy. To investigate the grey matter abnormalities in non-CNS (central nervous system) cancer survivors treated with chemotherapy using Anisotropic Effect Size Signed Differential Mapping (AES-SDM) software. We identified studies published up to Sep 2018 that compared grey matter in non-CNS cancer survivors treated with chemotherapy (CT+, 10 data sets including 433 individuals) and cancer survivors not treated with chemotherapy (CT-, 7 data sets including 210 individuals) or healthy controls (HC, 3 data sets including 407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Compared with both CT- and HC, the CT + groups exhibited a reduced grey matter volume (GMV), mainly in the prefrontal and anterior cingulate cortex (ACC) and right fusiform gyrus (FG). A smaller GMV in the FG and prefrontal cortex were found in the CT + compared with the CT-groups and in the CT + groups with impaired cognition. GMV in two areas was positively associated with the time since chemotherapy. The present results suggest that non-CNS cancer survivors treated with chemotherapy exhibit grey matter abnormalities in the brain, especially in the prefrontal and ACC cortex. Grey matter volume changes after chemotherapy may contribute to cognitive impairments in cancer survivors that can be observed after chemotherapy.

Sections du résumé

BACKGROUND BACKGROUND
Findings regarding chemotherapy-induced grey matter abnormalities are heterogeneous, and no meta-analysis has quantitatively assessed brain structural alterations in cancer survivors treated with chemotherapy.
PURPOSE OBJECTIVE
To investigate the grey matter abnormalities in non-CNS (central nervous system) cancer survivors treated with chemotherapy using Anisotropic Effect Size Signed Differential Mapping (AES-SDM) software.
METHOD METHODS
We identified studies published up to Sep 2018 that compared grey matter in non-CNS cancer survivors treated with chemotherapy (CT+, 10 data sets including 433 individuals) and cancer survivors not treated with chemotherapy (CT-, 7 data sets including 210 individuals) or healthy controls (HC, 3 data sets including 407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise.
RESULTS RESULTS
Compared with both CT- and HC, the CT + groups exhibited a reduced grey matter volume (GMV), mainly in the prefrontal and anterior cingulate cortex (ACC) and right fusiform gyrus (FG). A smaller GMV in the FG and prefrontal cortex were found in the CT + compared with the CT-groups and in the CT + groups with impaired cognition. GMV in two areas was positively associated with the time since chemotherapy.
CONCLUSIONS CONCLUSIONS
The present results suggest that non-CNS cancer survivors treated with chemotherapy exhibit grey matter abnormalities in the brain, especially in the prefrontal and ACC cortex. Grey matter volume changes after chemotherapy may contribute to cognitive impairments in cancer survivors that can be observed after chemotherapy.

Identifiants

pubmed: 33047236
doi: 10.1007/s11682-020-00402-7
pii: 10.1007/s11682-020-00402-7
doi:

Substances chimiques

Antineoplastic Agents 0

Types de publication

Journal Article Meta-Analysis Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2215-2227

Subventions

Organisme : Sichuan Science and Technology Program
ID : 2018SZ0183, 2017JY0080
Organisme : Chengdu Science and Technology Program
ID : 2018-YF05-01134-SN
Organisme : Populations Project of Health Commission of Sichuan Province
ID : 18PJ127
Organisme : Newton International Fellowship from the Royal Society, UK.
ID : -
Organisme : Newton International Fellowship from the Royal Society, UK.

Informations de copyright

© 2020. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7, 192–201.
pubmed: 17318212 pmcid: 3329763
Amidi, A., Agerbaek, M., Wu, L. M., Pedersen, A. D., Mehlsen, M., Clausen, C. R., et al. (2017). ’Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment’. Brain Imaging and Behavior, 11, 769–783.
pubmed: 27240852
Amidi, A., Agerbæk, M., Wu, L. M., Pedersen, A. D., Mehlsen, M., Clausen, C. R., Demontis, D., Børglum, A. D., Harbøll, A., & Zachariae, R. (2016). Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment. Brain Imaging & Behavior: 1–15.
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry–the methods. Neuroimage, 11: 805–21.
Bas-Hoogendam, J. M., van Steenbergen, H., Nienke Pannekoek, J., Fouche, J. P., Lochner, C., Hattingh, C. J., Cremers, H. R., Furmark, T., Mansson, K. N. T., Frick, A., Engman, J., Boraxbekk, C. J., Carlbring, P., Andersson, G., Fredrikson, M., Straube, T., Peterburs, J., Klumpp, H., Phan, K. L., Roelofs, K., Veltman, D. J., van Tol, M. J., Stein, D. J., & van der Wee, N. J. A. (2017). Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder. NeuroImage: Clinical, 16:678–88.
Boedhoe, P. S., Schmaal, L., Abe, Y., Ameis, S. H., Arnold, P. D., Batistuzzo, M. C., et al. (2017). Distinct subcortical alterations in pediatric and adult OCD: A worldwide meta- and mega-analysis . The American Journal of Psychiatry, 174, 60–69.
pubmed: 27609241
Bookstein, F. L. (2001). "Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage, 14, 1454–1462.
pubmed: 11707101
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.
pubmed: 10827444
Conroy, S. K., McDonald, B. C., Smith, D. J., Moser, L. R., West, J. D., Kamendulis, L. M., et al. (2013). Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Research and Treatment, 137, 493–502.
pubmed: 23263697
Correa, D. D., Root, J. C., Kryza-Lacombe, M., Mehta, M., Karimi, S., Hensley, M. L., & Relkin, N. (2017). Brain structure and function in patients with ovarian cancer treated with first-line chemotherapy: a pilot study. Brain Imaging & Behavior, 11, 1–12.
Davies, R. R., Scahill, V. L., Graham, A., Williams, G. B., Graham, K. S., & Hodges, J. R. (2009). Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology, 51, 491–503.
pubmed: 19308367
de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S., Nederveen, A. J., et al. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32, 1206–1219.
pubmed: 20669165
De Ruiter, Michiel, B., Liesbeth Reneman, W., Boogerd, D. J., Veltman, M., Caan, G., Douaud, C., Lavini, S. C., Linn, E., Boven, Frits, S. A. M., & Van Dam (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33, 2971–2983.
pubmed: 22095746
de Wit, S. J., Alonso, P., Schweren, L., Mataix-Cols, D., Lochner, C., Menchon, J. M., Stein, D. J., Fouche, J. P., Soriano-Mas, C., Sato, J. R., Hoexter, M. Q., Denys, D., Nakamae, T., Nishida, S., Kwon, J. S., Jang, J. H., Busatto, G. F., Cardoner, N., Cath, D. C., Fukui, K., Jung, W. H., Kim, S. N., Miguel, E. C., Narumoto, J., Phillips, M. L., Pujol, J., Remijnse, P. L., Sakai, Y., Shin, N. Y., Yamada, K., Veltman, D. J., & O. A. van den Heuvel. (2014). Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. The American Journal of Psychiatry, 171:340-9.
Dietrich, J., Han, R., Yang, Y., Mayer-Proschel, M., & Noble, M. (2006). CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. Journal of Biology, 5, 22.
pubmed: 17125495 pmcid: 2000477
Du, M., Liu, J., Chen, Z., Huang, X., Li, J., Kuang, W., et al. (2014). Brain grey matter volume alterations in late-life depression. Journal of Psychiatry & Neuroscience, 39, 397–406.
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test, BMJ, 315: 629–34.
Feng, Y., Zhang, X. D., Zheng, G., & Zhang, L. J. (2019). Chemotherapy-induced brain changes in breast cancer survivors: evaluation with multimodality magnetic resonance imaging. Brain Imaging and Behavior, 13, 1799–1814.
pubmed: 30937827
Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25, 3866–3870.
pubmed: 17761972
Ferreira, L. K., & Busatto, G. F. (2010). Heterogeneity of coordinate-based meta-analyses of neuroimaging data: an example from studies in OCD, British Journal of Psychiatry, 197:76–7; author reply 77.
Fornito, A., Yucel, M., Patti, J., Wood, S. J., & Pantelis, C. (2009). Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research, 108, 104–113.
pubmed: 19157788
Fouche, J. P., du Plessis, S., Hattingh, C., Roos, A., Lochner, C., Soriano-Mas, C., et al. (2017). Cortical thickness in obsessive-compulsive disorder: multisite mega-analysis of 780 brain scans from six centres. British Journal of Psychiatry, 210, 67–74.
Fuster, J. (2015). The Prefrontal Cortex (5th Edition).
Hu, X., Du, M., Chen, L., Li, L., Zhou, M., Zhang, L., et al. (2017). Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neuroscience & Biobehavioral Reviews, 78, 91–103.
Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., et al. (2007). Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109, 146–56.
pubmed: 17131349
Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., Wada, N., Imoto, S., Murakami, K., & Uchitomi, Y. (2010). Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109:146–56.
Jenkins, V., Thwaites, R., Cercignani, M., Sacre, S., Harrison, N., Whiteleyjones, H., Mullen, L., Chamberlain, G., & Davies, K., & Zammit, C. (2016). A feasibility study exploring the role of pre-operative assessment when examining the mechanism of ‘chemo-brain’ in breast cancer patients. Springerplus, 5:390.
Kaiser, J., Bledowski, C., & Dietrich, J. (2014). Neural correlates of chemotherapy-related cognitive impairment. Cortex, 54, 33–50.
pubmed: 24632463
Kesler, S. R., Bennett, F. C., Mahaffey, M. L., & Spiegel, D. (2009). Regional brain activation during verbal declarative memory in metastatic breast cancer. Clinical Cancer Research, 15, 6665–6673.
pubmed: 19843664 pmcid: 2859687
Kesler, S. R., Kent, J. S., & O’Hara, R. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Archives of Neurology, 68, 1447–1453.
pubmed: 22084128 pmcid: 3239218
Koppelmans, V., Breteler, M. M., Boogerd, W., Seynaeve, C., Gundy, C., & Schagen, S. B. (2012). ’Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. Journal of Clinical Oncology, 30, 1080–1086.
pubmed: 22370315
Koppelmans, V., De Ruiter, M. B., Lijn, F. V. D., Boogerd, W., Seynaeve, C., Lugt, A. V. D., Vrooman, H., & Niessen, W. J. & Breteler, M. B. (2012). Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Research & Treatment, 132:1099–106.
Li, M., & Caeyenberghs, K. (2018). Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: A systematic review. Neuroscience & Biobehavioral Reviews, 92, 304–317.
Lim, L., Radua, J., & Rubia, K. (2014). Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. The American Journal of Psychiatry, 171, 854–863.
pubmed: 24781447
Lui, S., Zhou, X. J., Sweeney, J. A., & Gong, Q. (2016). Psychoradiology: The Frontier of Neuroimaging in Psychiatry. Radiology, 281:357–72.
McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Research and Treatment, 123, 819–828.
pubmed: 20690040 pmcid: 3661415
McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30, 2500–2508.
pubmed: 22665542 pmcid: 3397784
McDonald, B. C., Conroy, S. K., Smith, D. J., West, J. D., & Saykin, A. J. (2013). Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain, Behavior, and Immunity, 30(Suppl), S117-25.
pubmed: 22613170
Mcdonald, B. C., & Saykin, A. J. (2013). Alterations in brain structure related to breast cancer and its treatment: chemotherapy and other considerations. Brain Imaging & Behavior, 7, 374–387.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.
pubmed: 25554246 pmcid: 4320440
Myers, J. S. (2012). Chemotherapy-related cognitive impairment: the breast cancer experience. Oncology Nursing Forum, 39, E31–E40.
pubmed: 22201666
Nordin, K., Berglund, G., Glimelius, B., & Sjoden, P. O. (2001). Predicting anxiety and depression among cancer patients: a clinical model. European Journal of Cancer, 37, 376–384.
pubmed: 11239760
Pomykala, K. L., de Ruiter, M. B., Deprez, S., Mcdonald, B. C., & Silverman, D. H. (2013). Integrating imaging findings in evaluating the post-chemotherapy brain. Brain Imaging & Behavior, 7, 436–452.
Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P. K., & Fusar-Poli, P. (2012). Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neuroscience & Biobehavioral Reviews, 36, 2325–2333.
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195, 393–402.
Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., & Surguladze, S. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27, 605–611.
pubmed: 21658917
Radua, J., Rubia, K., Canales-Rodriguez, E. J., Pomarol-Clotet, E., Fusar-Poli, P., & Mataix-Cols, D. (2014). Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Frontiers in Psychiatry, 5, 13.
pubmed: 24575054 pmcid: 3919071
Rust, C., & Davis, C. (2013). Chemobrain in underserved African American breast cancer survivors: a qualitative study. Clinical Journal of Oncology Nursing, 17, E29–E34.
pubmed: 23538262
Saykin, A. J., Ahles, T. A., & McDonald, B. C. (2003). Mechanisms of chemotherapy-induced cognitive disorders: neuropsychological, pathophysiological, and neuroimaging perspectives. Seminars in Clinical Neuropsychiatry, 8, 201–216.
pubmed: 14613048
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12, 154–167.
pubmed: 21331082 pmcid: 3044650
Shepherd, A. M., Matheson, S. L., Laurens, K. R., Carr, V. J., & Green, M. J. (2012). Systematic meta-analysis of insula volume in schizophrenia. Biological Psychiatry, 72, 775–784.
pubmed: 22621997
Silverman, D. H., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., et al. (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Research and Treatment, 103, 303–311.
pubmed: 17009108
Simó, M., Rifà-Ros, X., Rodriguez-Fornells, A., & Bruna, J. (2013). Chemobrain: a systematic review of structural and functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37, 1311–1321.
Simó, M., Root, J. C., Vaquero, L., Ripolles, P., Jove, J., Ahles, T., et al. (2015). Cognitive and brain structural changes in a lung cancer population. Journal of Thoracic Oncology, 10, 38–45.
pubmed: 25325778 pmcid: 5657249
Simó, M., Vaquero, L., Ripollés, P., Guturbay, A., Jové, J., Navarro, A., et al. (2016). Longitudinal brain changes associated with prophylactic cranial irradiation in lung cancer. Journal of Thoracic Oncology, 11, 475–486.
pubmed: 26804637
Stoutenkemperman, M. M., de Ruiter, M. B., Koppelmans, V., Boogerd, W., Reneman, L., & Schagen, S. B. (2015). Neurotoxicity in breast cancer survivors ≥ 10 years post-treatment is dependent on treatment type. Brain Imaging & Behavior, 9, 275–284.
Szczepanski, S. M., & Knight, R. T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83, 1002–1018.
pubmed: 25175878 pmcid: 4156912
Tao, L., Lin, H., Yan, Y., Xu, X., Wang, L., Zhang, J., & Yu, Y. (2017). Impairment of the executive function in breast cancer patients receiving chemotherapy treatment: a functional MRI study. European Journal of Cancer Care (Engl), 26.
Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology & Neuroscience Reports, 12, 267–275.
Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180–192.

Auteurs

Running Niu (R)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Mingying Du (M)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Jing Ren (J)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Haomiao Qing (H)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Xiaodong Wang (X)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Guohui Xu (G)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Du Lei (D)

Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 260 Stetson St., Suite 3326, Cincinnati, OH, USA. alien18@163.com.

Peng Zhou (P)

Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. zhoupeng2016101@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH