Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection: a Prospective Case-Control Study.
Butyrate
Microbiome
Stroke
Trimethylamine-N-oxide
Journal
Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
25
05
2020
accepted:
04
10
2020
revised:
01
10
2020
pubmed:
15
10
2020
medline:
14
1
2022
entrez:
14
10
2020
Statut:
ppublish
Résumé
In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 μM, Wilcoxon p < 0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77, p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.
Identifiants
pubmed: 33052545
doi: 10.1007/s12975-020-00863-4
pii: 10.1007/s12975-020-00863-4
pmc: PMC8213601
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
581-592Subventions
Organisme : ZonMw (NL)
ID : 171002302
Organisme : ZonMw (NL)
ID : 016116358
Organisme : ZonMw (NL)
ID : 91716475
Organisme : Hartstichting (NL)
ID : 2009B095
Organisme : H2020 European Research Council ()
ID : ERC Starting Grant
Organisme : ZonMw
ID : Spinoza Grant
Pays : Netherlands
Références
Westendorp WF, Nederkoorn PJ, Vermeij J-D, Dijkgraaf MG, van de Beek D. Post-stroke infection: A systematic review and meta-analysis. BMC Neurol. 2011;11:110.
pubmed: 21933425
pmcid: 3185266
doi: 10.1186/1471-2377-11-110
Chamorro Á, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8:401–10.
pubmed: 22664787
doi: 10.1038/nrneurol.2012.98
pmcid: 22664787
Stanley D, Mason LJ, MacKin KE, Srikhanta YN, Lyras D, Prakash MD, et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med Nature Publishing Group. 2016;22:1277–84.
doi: 10.1038/nm.4194
Westendorp WF, Vermeij JD, Zock E, Hooijenga IJ, Kruyt ND, Bosboom HJLW, et al. The preventive antibiotics in stroke study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. Lancet Elsevier Ltd. 2015;385:1519–26.
doi: 10.1016/S0140-6736(14)62456-9
Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. Nature Publishing Group. 2016;22:516–23.
doi: 10.1038/nm.4068
Winek K, Meisel A, Dirnagl U. Gut microbiota impact on stroke outcome: fad or fact? J Cereb Blood Flow Metab. 2015;36:891–8.
doi: 10.1177/0271678X16636890
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. Elsevier Inc. 2014;157:121–41.
Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22:1079–89.
pubmed: 27711063
doi: 10.1038/nm.4185
pmcid: 27711063
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol. 2017:135–43.
Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.
pubmed: 23614584
pmcid: 3701945
doi: 10.1056/NEJMoa1109400
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.
pubmed: 23563705
pmcid: 3650111
doi: 10.1038/nm.3145
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. Elsevier Inc. 2016;165:111–24.
Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38:2948–56.
pubmed: 29020409
doi: 10.1093/eurheartj/ehx342
pmcid: 29020409
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.
pubmed: 23985870
doi: 10.1038/nature12506
pmcid: 23985870
Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.
pubmed: 26030851
pmcid: 5528863
doi: 10.1038/nn.4030
Sadler R, Cramer JV, Heindl S, Kostidis S, Betz D, Zuurbier KR, et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci. 2020;40:1162–73.
pubmed: 31889008
pmcid: 6989004
doi: 10.1523/JNEUROSCI.1359-19.2019
Kim HJ, Leeds P, Chuang D-M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem. 2009;110:1226–40.
pubmed: 19549282
pmcid: 2726719
doi: 10.1111/j.1471-4159.2009.06212.x
Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One. 2017;12:1–15.
Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al. Dysbiosis of gut microbiota with reduced trimethylamine-n-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc. 2015;4:1–12.
doi: 10.1161/JAHA.115.002699
Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, et al. Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol. 2019;10:1–13.
doi: 10.3389/fneur.2019.00001
Li N, Weng X, Sun C, Wu X, Lu M, Si Y, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019;19:1–8.
doi: 10.1186/s12866-018-1372-8
Chakraborty K, Raundhal M, Chen BB, Morse C, Tyurina YY, Khare A, et al. The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nat Commun Nature Publishing Group. 2017;8:1–15.
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. Cell Press. 2019;50:432–445.e7.
Haak BW, Littmann ER, Chaubard J-L, Pickard AJ, Fontana E, Adhi F, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood. 2018;131.
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
pubmed: 1950982
pmcid: 1950982
doi: 10.1128/AEM.00062-07
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
doi: 10.1093/nar/gks1219
Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans: an overview using omics data. Shade A, editor. mSystems. 2017;2:43–51.
doi: 10.1128/mSystems.00130-17
Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome Microbiome. 2017;5:1–14.
doi: 10.1186/s40168-016-0209-7
Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–96.
pubmed: 28360349
pmcid: 5390330
doi: 10.1161/CIRCRESAHA.117.309715
Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7:915–26.
pubmed: 18722812
pmcid: 2665267
doi: 10.1016/S1474-4422(08)70193-5
McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS One. 2013;8:e61217.
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Johnston KC, Connors AF, Wagner DP, Knaus WA, Wang XQ, Haley EC. A predictive risk model for outcomes of ischemic stroke. Stroke. 2000;31:448–55.
pubmed: 10657421
doi: 10.1161/01.STR.31.2.448
pmcid: 10657421
Smith CJ, Kishore AK, Vail A, Chamorro A, Garau J, Hopkins SJ, et al. Diagnosis of stroke-associated pneumonia: recommendations from the pneumonia in stroke consensus group. Stroke. 2015;46:2335–40.
pubmed: 26111886
doi: 10.1161/STROKEAHA.115.009617
pmcid: 26111886
Sidorov E, Sanghera DK, Vanamala JKP. Biomarker for ischemic stroke using metabolome: a clinician perspective. J Stroke. 2019;21:31–41.
pubmed: 30732441
pmcid: 6372900
doi: 10.5853/jos.2018.03454
Vinjé S, Stroes E, Nieuwdorp M, Hazen SL. The gut microbiome as novel cardio-metabolic target: The time has come! Eur Heart J. 2014;35:883–7.
pubmed: 24216389
doi: 10.1093/eurheartj/eht467
pmcid: 24216389
Zeng X, Gao X, Peng Y, Wu Q, Zhu J, Tan C, et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol. 2019;9:4.
pubmed: 30778376
pmcid: 6369648
doi: 10.3389/fcimb.2019.00004
Poli D, Testa S, Antonucci E, Grifoni E, Paoletti O, Lip GYH. Bleeding and stroke risk in a real-world prospective primary prevention cohort of patients with atrial fibrillation. Chest. 2011;140:918–24.
pubmed: 21511826
pmcid: 3734882
doi: 10.1378/chest.10-3024
An SJ, Kim TJ, Yoon B-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J Stroke. 2017;19:3–10.
pubmed: 28178408
pmcid: 5307940
doi: 10.5853/jos.2016.00864
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.
pubmed: 22698888
doi: 10.1016/S1474-4422(12)70104-7
pmcid: 22698888
Tan C, Wang H, Gao X, Xu R, Zeng X, Cui Z, et al. Dynamic changes and prognostic value of gut microbiota-dependent trimethylamine-N-oxide in acute ischemic stroke. Front Neurol. 2020;11.
Schneider C, Okun JG, Schwarz KV, Hauke J, Zorn M, Nürnberg C, et al. Trimethylamine-N-oxide is elevated in the acute phase after ischaemic stroke and decreases within the first days. Eur J Neurol. 2020;27:1596–603.
pubmed: 32282978
doi: 10.1111/ene.14253
pmcid: 32282978
Lee JR, Huang J, Magruder M. Butyrate-producing gut bacteria and viral infections in kidney transplant recipients: a pilot study. Transpl Infect Dis. 2019;21:e13180.
pubmed: 31544324
pmcid: 6917841
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111:2247–52.
pubmed: 24390544
pmcid: 3926023
doi: 10.1073/pnas.1322269111
Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science (80- ). 2017;357:498–502.
doi: 10.1126/science.aam5336
Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature Nature Publishing Group. 2013;504:451–5.
Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.
pubmed: 19169263
doi: 10.1038/nm.1927
pmcid: 19169263
Haak BW, de Jong HK, Kostidis S, Giera M, Maude RR, Samad R, et al. Altered patterns of compositional and functional disruption of the gut microbiota in typhoid fever and nontyphoidal febrile illness. Open Forum Infect Dis. 2020;7.
Westendorp WF, Vermeij JD, Hilkens NA, Brouwer MC, Algra A, van der Worp HB, et al. Development and internal validation of a prediction rule for post-stroke infection and post-stroke pneumonia in acute stroke patients. Eur Stroke J. 2018;3:136–44.
pubmed: 29900413
pmcid: 5992742
doi: 10.1177/2396987318764519