The NAD
Animals
Armadillo Domain Proteins
/ antagonists & inhibitors
Binding Sites
Cryoelectron Microscopy
Cytoskeletal Proteins
/ antagonists & inhibitors
Female
HEK293 Cells
Humans
Ligands
Mice
Models, Molecular
NAD
/ metabolism
NAD+ Nucleosidase
/ metabolism
Neurodegenerative Diseases
/ metabolism
Neurons
/ metabolism
Protein Binding
Protein Domains
Sf9 Cells
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
08
05
2020
accepted:
08
10
2020
pubmed:
15
10
2020
medline:
17
11
2021
entrez:
14
10
2020
Statut:
ppublish
Résumé
Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration
Identifiants
pubmed: 33053563
doi: 10.1038/s41586-020-2862-z
pii: 10.1038/s41586-020-2862-z
doi:
Substances chimiques
Armadillo Domain Proteins
0
Cytoskeletal Proteins
0
Ligands
0
SARM1 protein, human
0
SARM1 protein, mouse
0
NAD
0U46U6E8UK
NAD+ Nucleosidase
EC 3.2.2.5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
658-663Références
Coleman, M. P. & Freeman, M. R. Wallerian degeneration, Wld
pubmed: 20345246
pmcid: 5223592
doi: 10.1146/annurev-neuro-060909-153248
Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).
pubmed: 24840802
doi: 10.1038/nrn3680
Freeman, M. R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 27, 224–231 (2014).
pubmed: 24907513
doi: 10.1016/j.conb.2014.05.001
Coleman, M. P. & Höke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196 (2020).
pubmed: 32152523
doi: 10.1038/s41583-020-0269-3
pmcid: 8926152
Osterloh, J. M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484 (2012).
pubmed: 22678360
pmcid: 5225956
doi: 10.1126/science.1223899
Gerdts, J., Summers, D. W., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci. 33, 13569–13580 (2013).
pubmed: 23946415
pmcid: 3742939
doi: 10.1523/JNEUROSCI.1197-13.2013
Yang, J. et al. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160, 161–176 (2015).
pubmed: 25594179
pmcid: 4306654
doi: 10.1016/j.cell.2014.11.053
Walker, L. J. et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 6, e22540 (2017).
pubmed: 28095293
pmcid: 5241118
doi: 10.7554/eLife.22540
Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD
pubmed: 28334607
pmcid: 6284238
doi: 10.1016/j.neuron.2017.02.022
Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD
pubmed: 25908823
pmcid: 4513950
doi: 10.1126/science.1258366
Figley, M. D. & DiAntonio, A. The SARM1 axon degeneration pathway: control of the NAD
pubmed: 32311648
doi: 10.1016/j.conb.2020.02.012
pmcid: 7483800
Gerdts, J., Summers, D. W., Milbrandt, J. & DiAntonio, A. Axon self-destruction: new links among SARM1, MAPKs, and NAD
pubmed: 26844829
pmcid: 4742785
doi: 10.1016/j.neuron.2015.12.023
Mack, T. G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001).
pubmed: 11770485
doi: 10.1038/nn770
Lunn, E. R., Perry, V. H., Brown, M. C., Rosen, H. & Gordon, S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33 (1989).
pubmed: 12106171
doi: 10.1111/j.1460-9568.1989.tb00771.x
Babetto, E. et al. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J. Neurosci. 30, 13291–13304 (2010).
pubmed: 20926655
pmcid: 6634738
doi: 10.1523/JNEUROSCI.1189-10.2010
Sasaki, Y., Vohra, B. P., Baloh, R. H. & Milbrandt, J. Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526–6534 (2009).
pubmed: 19458223
pmcid: 2697066
doi: 10.1523/JNEUROSCI.1429-09.2009
Horsefield, S. et al. NAD
pubmed: 31439792
doi: 10.1126/science.aax1911
Chuang, C. F. & Bargmann, C. I. A. A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev. 19, 270–281 (2005).
pubmed: 15625192
pmcid: 545892
doi: 10.1101/gad.1276505
Sporny, M. et al. Structural evidence for an octameric ring arrangement of SARM1. J. Mol. Biol. 431, 3591–3605 (2019).
pubmed: 31278906
doi: 10.1016/j.jmb.2019.06.030
Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat. Struct. Biol. 6, 388–397 (1999).
pubmed: 10201409
doi: 10.1038/7625
Huber, A. H., Nelson, W. J. & Weis, W. I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871–882 (1997).
pubmed: 9298899
doi: 10.1016/S0092-8674(00)80352-9
Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).
pubmed: 11081518
doi: 10.1038/35040600
Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD
pubmed: 27671644
doi: 10.1073/pnas.1601506113
pmcid: 5068253
Williams, S. J. et al. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344, 299–303 (2014).
pubmed: 24744375
doi: 10.1126/science.1247357
Nyman, T. et al. The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J. Biol. Chem. 283, 11861–11865 (2008).
pubmed: 18332149
doi: 10.1074/jbc.C800001200
Kim, Y. et al. MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J. Exp. Med. 204, 2063–2074 (2007).
pubmed: 17724133
pmcid: 2118693
doi: 10.1084/jem.20070868
Chai, J. & Shi, Y. Apoptosome and inflammasome: conserved machineries for caspase activation. Natl Sci. Rev. 1, 101–118 (2014).
doi: 10.1093/nsr/nwt025
Bratkowski, M. et al. Structural and mechanistic regulation of the pro-degenerative NAD hydrolase SARM1. Cell Rep. 32, 107999 (2020).
pubmed: 32755591
doi: 10.1016/j.celrep.2020.107999
Sporny, M. et al. The structural basis for SARM1 inhibition, and activation under energetic stress. Preprint at bioRxiv https://doi.org/10.1101/2020.08.05.238287 (2020).
Yang, H. et al. Nutrient-sensitive mitochondrial NAD
pubmed: 17889652
pmcid: 3366687
doi: 10.1016/j.cell.2007.07.035
Yang, Y., Mohammed, F. S., Zhang, N. & Sauve, A. A. Dihydronicotinamide riboside is a potent NAD
pubmed: 30948509
pmcid: 6556581
doi: 10.1074/jbc.RA118.005772
Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015).
pubmed: 25818290
pmcid: 4386025
doi: 10.1016/j.celrep.2015.02.060
Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci. 33, 13410–13424 (2013).
pubmed: 23946398
pmcid: 6705152
doi: 10.1523/JNEUROSCI.1534-13.2013
Loreto, A., Di Stefano, M., Gering, M. & Conforti, L. Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca
pubmed: 26686637
doi: 10.1016/j.celrep.2015.11.032
Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019).
pubmed: 31128467
pmcid: 6531917
doi: 10.1016/j.isci.2019.05.001
Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015).
pubmed: 25323584
doi: 10.1038/cdd.2014.164
Di Stefano, M. et al. NMN deamidase delays Wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27, 784–794 (2017).
pubmed: 28262487
doi: 10.1016/j.cub.2017.01.070
Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD
pubmed: 27735788
pmcid: 5063586
doi: 10.7554/eLife.19749
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).
pubmed: 25299155
pmcid: 4291175
doi: 10.1038/nprot.2014.173
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007
pubmed: 16182563
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466
pmcid: 5494038
doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D 73, 496–502 (2017).
doi: 10.1107/S2059798316019276
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
pubmed: 15264254
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
doi: 10.1107/S0907444910007493
pmcid: 2852313
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
doi: 10.1107/S0907444909052925
pmcid: 2815670
Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).
pubmed: 25615868
doi: 10.1107/S1399004714021683
pmcid: 4304694
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
pubmed: 17452350
pmcid: 1933162
doi: 10.1093/nar/gkm216
Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).
pubmed: 17488841
pmcid: 1933214
doi: 10.1093/nar/gkm276
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834
pmcid: 5554542
doi: 10.1038/nmeth.2089
Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).
pubmed: 19396159
pmcid: 3969859
doi: 10.1038/nature07991