The NAD


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
12 2020
Historique:
received: 08 05 2020
accepted: 08 10 2020
pubmed: 15 10 2020
medline: 17 11 2021
entrez: 14 10 2020
Statut: ppublish

Résumé

Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration

Identifiants

pubmed: 33053563
doi: 10.1038/s41586-020-2862-z
pii: 10.1038/s41586-020-2862-z
doi:

Substances chimiques

Armadillo Domain Proteins 0
Cytoskeletal Proteins 0
Ligands 0
SARM1 protein, human 0
SARM1 protein, mouse 0
NAD 0U46U6E8UK
NAD+ Nucleosidase EC 3.2.2.5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

658-663

Références

Coleman, M. P. & Freeman, M. R. Wallerian degeneration, Wld
pubmed: 20345246 pmcid: 5223592 doi: 10.1146/annurev-neuro-060909-153248
Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).
pubmed: 24840802 doi: 10.1038/nrn3680
Freeman, M. R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 27, 224–231 (2014).
pubmed: 24907513 doi: 10.1016/j.conb.2014.05.001
Coleman, M. P. & Höke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196 (2020).
pubmed: 32152523 doi: 10.1038/s41583-020-0269-3 pmcid: 8926152
Osterloh, J. M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484 (2012).
pubmed: 22678360 pmcid: 5225956 doi: 10.1126/science.1223899
Gerdts, J., Summers, D. W., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci. 33, 13569–13580 (2013).
pubmed: 23946415 pmcid: 3742939 doi: 10.1523/JNEUROSCI.1197-13.2013
Yang, J. et al. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160, 161–176 (2015).
pubmed: 25594179 pmcid: 4306654 doi: 10.1016/j.cell.2014.11.053
Walker, L. J. et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 6, e22540 (2017).
pubmed: 28095293 pmcid: 5241118 doi: 10.7554/eLife.22540
Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD
pubmed: 28334607 pmcid: 6284238 doi: 10.1016/j.neuron.2017.02.022
Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD
pubmed: 25908823 pmcid: 4513950 doi: 10.1126/science.1258366
Figley, M. D. & DiAntonio, A. The SARM1 axon degeneration pathway: control of the NAD
pubmed: 32311648 doi: 10.1016/j.conb.2020.02.012 pmcid: 7483800
Gerdts, J., Summers, D. W., Milbrandt, J. & DiAntonio, A. Axon self-destruction: new links among SARM1, MAPKs, and NAD
pubmed: 26844829 pmcid: 4742785 doi: 10.1016/j.neuron.2015.12.023
Mack, T. G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001).
pubmed: 11770485 doi: 10.1038/nn770
Lunn, E. R., Perry, V. H., Brown, M. C., Rosen, H. & Gordon, S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33 (1989).
pubmed: 12106171 doi: 10.1111/j.1460-9568.1989.tb00771.x
Babetto, E. et al. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J. Neurosci. 30, 13291–13304 (2010).
pubmed: 20926655 pmcid: 6634738 doi: 10.1523/JNEUROSCI.1189-10.2010
Sasaki, Y., Vohra, B. P., Baloh, R. H. & Milbrandt, J. Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526–6534 (2009).
pubmed: 19458223 pmcid: 2697066 doi: 10.1523/JNEUROSCI.1429-09.2009
Horsefield, S. et al. NAD
pubmed: 31439792 doi: 10.1126/science.aax1911
Chuang, C. F. & Bargmann, C. I. A. A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev. 19, 270–281 (2005).
pubmed: 15625192 pmcid: 545892 doi: 10.1101/gad.1276505
Sporny, M. et al. Structural evidence for an octameric ring arrangement of SARM1. J. Mol. Biol. 431, 3591–3605 (2019).
pubmed: 31278906 doi: 10.1016/j.jmb.2019.06.030
Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat. Struct. Biol. 6, 388–397 (1999).
pubmed: 10201409 doi: 10.1038/7625
Huber, A. H., Nelson, W. J. & Weis, W. I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871–882 (1997).
pubmed: 9298899 doi: 10.1016/S0092-8674(00)80352-9
Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).
pubmed: 11081518 doi: 10.1038/35040600
Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD
pubmed: 27671644 doi: 10.1073/pnas.1601506113 pmcid: 5068253
Williams, S. J. et al. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344, 299–303 (2014).
pubmed: 24744375 doi: 10.1126/science.1247357
Nyman, T. et al. The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J. Biol. Chem. 283, 11861–11865 (2008).
pubmed: 18332149 doi: 10.1074/jbc.C800001200
Kim, Y. et al. MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J. Exp. Med. 204, 2063–2074 (2007).
pubmed: 17724133 pmcid: 2118693 doi: 10.1084/jem.20070868
Chai, J. & Shi, Y. Apoptosome and inflammasome: conserved machineries for caspase activation. Natl Sci. Rev. 1, 101–118 (2014).
doi: 10.1093/nsr/nwt025
Bratkowski, M. et al. Structural and mechanistic regulation of the pro-degenerative NAD hydrolase SARM1. Cell Rep. 32, 107999 (2020).
pubmed: 32755591 doi: 10.1016/j.celrep.2020.107999
Sporny, M. et al. The structural basis for SARM1 inhibition, and activation under energetic stress. Preprint at bioRxiv https://doi.org/10.1101/2020.08.05.238287 (2020).
Yang, H. et al. Nutrient-sensitive mitochondrial NAD
pubmed: 17889652 pmcid: 3366687 doi: 10.1016/j.cell.2007.07.035
Yang, Y., Mohammed, F. S., Zhang, N. & Sauve, A. A. Dihydronicotinamide riboside is a potent NAD
pubmed: 30948509 pmcid: 6556581 doi: 10.1074/jbc.RA118.005772
Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015).
pubmed: 25818290 pmcid: 4386025 doi: 10.1016/j.celrep.2015.02.060
Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci. 33, 13410–13424 (2013).
pubmed: 23946398 pmcid: 6705152 doi: 10.1523/JNEUROSCI.1534-13.2013
Loreto, A., Di Stefano, M., Gering, M. & Conforti, L. Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca
pubmed: 26686637 doi: 10.1016/j.celrep.2015.11.032
Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019).
pubmed: 31128467 pmcid: 6531917 doi: 10.1016/j.isci.2019.05.001
Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015).
pubmed: 25323584 doi: 10.1038/cdd.2014.164
Di Stefano, M. et al. NMN deamidase delays Wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27, 784–794 (2017).
pubmed: 28262487 doi: 10.1016/j.cub.2017.01.070
Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD
pubmed: 27735788 pmcid: 5063586 doi: 10.7554/eLife.19749
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).
pubmed: 25299155 pmcid: 4291175 doi: 10.1038/nprot.2014.173
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007 pubmed: 16182563
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D 73, 496–502 (2017).
doi: 10.1107/S2059798316019276
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084 pubmed: 15264254
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 doi: 10.1107/S0907444910007493 pmcid: 2852313
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 doi: 10.1107/S0907444909052925 pmcid: 2815670
Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).
pubmed: 25615868 doi: 10.1107/S1399004714021683 pmcid: 4304694
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
pubmed: 17452350 pmcid: 1933162 doi: 10.1093/nar/gkm216
Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).
pubmed: 17488841 pmcid: 1933214 doi: 10.1093/nar/gkm276
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).
pubmed: 19396159 pmcid: 3969859 doi: 10.1038/nature07991

Auteurs

Yuefeng Jiang (Y)

State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.

Tingting Liu (T)

State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.

Chia-Hsueh Lee (CH)

Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Qing Chang (Q)

Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.

Jing Yang (J)

State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China. jing.yang@pku.edu.cn.

Zhe Zhang (Z)

State Key Laboratory of Membrane Biology, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China. zzhang01@pku.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH