Astrocytes in the regulation of cerebrovascular functions.
astrocyte
cerebrovascular system
gliovascular interface
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
17
07
2020
revised:
18
09
2020
accepted:
21
09
2020
pubmed:
16
10
2020
medline:
8
2
2022
entrez:
15
10
2020
Statut:
ppublish
Résumé
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
817-841Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Abbott, N. J. (2004). Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discovery Today: Technologies, 1(4), 407-416. https://doi.org/10.1016/j.ddtec.2004.11.014
Abnet, K., Fawcett, J. W., & Dunnett, S. B. (1991). Interactions between meningeal cells and astrocytes in vivo and in vitro. Brain Research. Developmental Brain Research, 59(2), 187-196. https://doi.org/10.1016/0165-3806(91)90099-5
Achariyar, T. M., Li, B., Peng, W., Verghese, P. B., Shi, Y., McConnell, E., … Deane, R. (2016). Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Molecular Neurodegeneration, 11(1), 74. https://doi.org/10.1186/s13024-016-0138-8
Agrawal, S., Anderson, P., Durbeej, M., van Rooijen, N., Ivars, F., Opdenakker, G., & Sorokin, L. M. (2006). Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. The Journal of Experimental Medicine, 203(4), 1007-1019. https://doi.org/10.1084/jem.20051342
Agrawal, S. M., & Yong, V. W. (2011). The many faces of EMMPRIN-Roles in neuroinflammation. Biochimica et Biophysica Acta, 1812(2), 213-219. https://doi.org/10.1016/j.bbadis.2010.07.018
Ahir, B. K., Engelhard, H. H., & Lakka, S. S. (2020). Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Molecular Neurobiology, 57(5), 2461-2478. https://doi.org/10.1007/s12035-020-01892-8
Akhavan, A., Crivelli, S. N., Singh, M., Lingappa, V. R., & Muschler, J. L. (2008). SEA domain proteolysis determines the functional composition of dystroglycan. The FASEB Journal, 22(2), 612-621. https://doi.org/10.1096/fj.07-8354com
Albrecht, D. E., & Froehner, S. C. (2002). Syntrophins and dystrobrevins: Defining the dystrophin scaffold at synapses. Neurosignals, 11(3), 123-129. https://doi.org/10.1159/000065053
Allen, N. J., & Barres, B. A. (2009). Neuroscience: Glia-More than just brain glue. Nature, 457(7230), 675-677. https://doi.org/10.1038/457675a
Alvarez, J. I., Dodelet-Devillers, A., Kebir, H., Ifergan, I., Fabre, P. J., Terouz, S., … Prat, A. (2011). The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 334(6063), 1727-1731. https://doi.org/10.1126/science.1206936
Alvarez, V., Maeder, P., & Rossetti, A. O. (2010). Postictal blood-brain barrier breakdown on contrast-enhanced MRI. Epilepsy & Behavior, 17(2), 302-303. https://doi.org/10.1016/j.yebeh.2009.12.025
Alvestad, S., Hammer, J., Hoddevik, E. H., Skare, Ø., Sonnewald, U., Amiry-Moghaddam, M., & Ottersen, O. P. (2013). Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy. Epilepsy Research, 105(1-2), 30-41. https://doi.org/10.1016/j.eplepsyres.2013.01.006
Amiry-Moghaddam, M., Frydenlund, D. S., & Ottersen, O. P. (2004). Anchoring of aquaporin-4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience, 129(4), 999-1010. https://doi.org/10.1016/j.neuroscience.2004.08.049
Amiry-Moghaddam, M., & Ottersen, O. P. (2003). The molecular basis of water transport in the brain. Nature Reviews. Neuroscience, 4(12), 991-1001. https://doi.org/10.1038/nrn1252
Amiry-Moghaddam, M., Williamson, A., Palomba, M., Eid, T., de Lanerolle, N. C., Nagelhus, E. A., … Ottersen, O. P. (2003). Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of α-syntrophin-null mice. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13615-13620. https://doi.org/10.1073/pnas.2336064100
Aragon, J., Gonzalez-Reyes, M., Romo-Yanez, J., Vacca, O., Aguilar-Gonzalez, G., Rendon, A., … Montanez, C. (2018). Dystrophin Dp71 isoforms are differentially expressed in the mouse brain and retina: Report of new alternative splicing and a novel nomenclature for Dp71 isoforms. Molecular Neurobiology, 55(2), 1376-1386. https://doi.org/10.1007/s12035-017-0405-x
Argaw, A. T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J. N., … John, G. R. (2012). Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. The Journal of Clinical Investigation, 122(7), 2454-2468. https://doi.org/10.1172/JCI60842
Aronica, E., Gorter, J. A., Jansen, G. H., Leenstra, S., Yankaya, B., & Troost, D. (2001). Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathologica, 101(5), 449-459. https://doi.org/10.1007/s004010000305
Arranz, A. M., & de Strooper, B. (2019). The role of astroglia in Alzheimer's disease: Pathophysiology and clinical implications. Lancet Neurology, 18(4), 406-414. https://doi.org/10.1016/S1474-4422(18)30490-3
Aspelund, A., Antila, S., Proulx, S. T., Karlsen, T. V., Karaman, S., Detmar, M., … Alitalo, K. (2015). A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. The Journal of Experimental Medicine, 212(7), 991-999. https://doi.org/10.1084/jem.20142290
Bak, L. K., Schousboe, A., Sonnewald, U., & Waagepetersen, H. S. (2006). Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. Journal of Cerebral Blood Flow and Metabolism, 26(10), 1285-1297. https://doi.org/10.1038/sj.jcbfm.9600281
Balslev, Y., Dziegielewska, K. M., Mollgard, K., & Saunders, N. R. (1997). Intercellular barriers to and transcellular transfer of albumin in the fetal sheep brain. Anatomy and Embryology, 195(3), 229-236. https://doi.org/10.1007/s004290050042
Bang, S., Lee, S. R., Ko, J., Son, K., Tahk, D., Ahn, J., … Jeon, N. L. (2017). A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Scientific Reports, 7(1), 8083. https://doi.org/10.1038/s41598-017-07416-0
Bankstahl, M., Breuer, H., Leiter, I., Märkel, M., Bascuñana, P., Michalski, D., … Härtig, W. (2018). Blood-brain barrier leakage during early epileptogenesis is associated with rapid remodeling of the neurovascular unit. eNeuro, 5(3), ENEURO.0123-ENEU18.2018. https://doi.org/10.1523/ENEURO.0123-18.2018
Bardehle, S., Kruger, M., Buggenthin, F., Schwausch, J., Ninkovic, J., Clevers, H., … Gotz, M. (2013). Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature Neuroscience, 16(5), 580-586. https://doi.org/10.1038/nn.3371
Batiuk, M. Y., Martirosyan, A., Wahis, J., de Vin, F., Marneffe, C., Kusserow, C., … Holt, M. G. (2020). Identification of region-specific astrocyte subtypes at single cell resolution. Nature Communications, 11(1), 1220. https://doi.org/10.1038/s41467-019-14198-8
Bechmann, I., Steiner, B., Gimsa, U., Mor, G., Wolf, S., Beyer, M., … Zipp, F. (2002). Astrocyte-induced T cell elimination is CD95 ligand dependent. Journal of Neuroimmunology, 132(1-2), 60-65. https://doi.org/10.1016/s0165-5728(02)00311-9
Bell, R. D., Winkler, E. A., Singh, I., Sagare, A. P., Deane, R., Wu, Z., … Zlokovic, B. V. (2012). Apolipoprotein E controls cerebrovascular integrity via cyclophilin a. Nature, 485(7399), 512-516. https://doi.org/10.1038/nature11087
Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K., & Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 9, 278. https://doi.org/10.3389/fncel.2015.00278
Benabdesselam, R., Dorbani-Mamine, L., Benmessaoud-Mesbah, O., Rendon, A., Mhaouty-Kodja, S., & Hardin-Pouzet, H. (2012). Dp71 gene disruption alters the composition of the dystrophin-associated protein complex and neuronal nitric oxide synthase expression in the hypothalamic supraoptic and paraventricular nuclei. The Journal of Endocrinology, 213(3), 239-249. https://doi.org/10.1530/JOE-12-0066
Benesova, J., Rusnakova, V., Honsa, P., Pivonkova, H., Dzamba, D., Kubista, M., & Anderova, M. (2012). Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One, 7(1), e29725. https://doi.org/10.1371/journal.pone.0029725
Benz, F., Wichitnaowarat, V., Lehmann, M., Germano, R. F., Mihova, D., Macas, J., … Liebner, S. (2019). Low wnt/beta-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife, 8, e43818. https://doi.org/10.7554/eLife.43818
Bindocci, E., Savtchouk, I., Liaudet, N., Becker, D., Carriero, G., & Volterra, A. (2017). Three-dimensional Ca(2+) imaging advances understanding of astrocyte biology. Science, 356(6339), eaai8185. https://doi.org/10.1126/science.aai8185
Bonder, D. E., & McCarthy, K. D. (2014). Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. The Journal of Neuroscience, 34(39), 13139-13150. https://doi.org/10.1523/JNEUROSCI.2591-14.2014
Boulay, A. C., del Castillo, F. J., Giraudet, F., Hamard, G., Giaume, C., Petit, C., … Cohen-Salmon, M. (2013). Hearing is normal without connexin30. The Journal of Neuroscience, 33(2), 430-434. https://doi.org/10.1523/JNEUROSCI.4240-12.2013
Boulay, A. C., Gilbert, A., Oliveira Moreira, V., Blugeon, C., Perrin, S., Pouch, J., … Cohen-Salmon, M. (2018). Connexin 43 controls the astrocyte immunoregulatory phenotype. Brain Sciences, 8(4), 50. https://doi.org/10.3390/brainsci8040050
Boulay, A. C., Mazare, N., Saubamea, B., & Cohen-Salmon, M. (2019). Preparing the astrocyte perivascular endfeet transcriptome to investigate astrocyte molecular regulations at the brain-vascular interface. Methods in Molecular Biology, 1938, 105-116. https://doi.org/10.1007/978-1-4939-9068-9_8
Boulay, A. C., Mazeraud, A., Cisternino, S., Saubamea, B., Mailly, P., Jourdren, L., … Cohen-Salmon, M. (2015). Immune quiescence of the brain is set by astroglial connexin 43. The Journal of Neuroscience, 35(10), 4427-4439. https://doi.org/10.1523/JNEUROSCI.2575-14.2015
Boulay, A. C., Saubaméa, B., Adam, N., Chasseigneaux, S., Mazaré, N., Gilbert, A., … Cohen-Salmon, M. (2017). Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discovery, 3, 17005. https://doi.org/10.1038/celldisc.2017.5
Boulay, A. C., Saubamea, B., Decleves, X., & Cohen-Salmon, M. (2015). Purification of mouse brain vessels. Journal of Visualized Experiments: JoVE, 105(105), e53208. https://doi.org/10.3791/53208
Bragg, A. D., Amiry-Moghaddam, M., Ottersen, O. P., Adams, M. E., & Froehner, S. C. (2006). Assembly of a perivascular astrocyte protein scaffold at the mammalian blood-brain barrier is dependent on alpha-syntrophin. Glia, 53(8), 879-890. https://doi.org/10.1002/glia.20347
Bragg, A. D., Das, S. S., & Froehner, S. C. (2010). Dystrophin-associated protein scaffolding in brain requires alpha-dystrobrevin. Neuroreport, 21(10), 695-699. https://doi.org/10.1097/WNR.0b013e32833b0a3b
Brendel, K., Meezan, E., & Carlson, E. C. (1974). Isolated brain microvessels: A purified, metabolically active preparation from bovine cerebral cortex. Science, 185(4155), 953-955. https://doi.org/10.1126/science.185.4155.953
Brix, B., Mesters, J. R., Pellerin, L., & Johren, O. (2012). Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1alpha-mediated target gene activation. The Journal of Neuroscience, 32(28), 9727-9735. https://doi.org/10.1523/JNEUROSCI.0879-12.2012
Brochner, C. B., Holst, C. B., & Mollgard, K. (2015). Outer brain barriers in rat and human development. Frontiers in Neuroscience, 9, 75. https://doi.org/10.3389/fnins.2015.00075
Buckingham, S. C., & Robel, S. (2013). Glutamate and tumor-associated epilepsy: Glial cell dysfunction in the peritumoral environment. Neurochemistry International, 63(7), 696-701. https://doi.org/10.1016/j.neuint.2013.01.027
Bugiani, M., Dubey, M., Breur, M., Postma, N. L., Dekker, M. P., ter Braak, T., … van der Knaap, M. S. (2017). Megalencephalic leukoencephalopathy with cysts: The Glialcam-null mouse model. Annals of Clinical and Translational Neurology, 4(7), 450-465. https://doi.org/10.1002/acn3.405
Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22(1), 183-192 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11756501
Butt, A. M., & Kalsi, A. (2006). Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. Journal of Cellular and Molecular Medicine, 10(1), 33-44. https://doi.org/10.1111/j.1582-4934.2006.tb00289.x
Cali, C., Agus, M., Kare, K., Boges, D. J., Lehvaslaiho, H., Hadwiger, M., & Magistretti, P. J. (2019). 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from serial block-face Electron microscopy of juvenile rat. Progress in Neurobiology, 183, 101696. https://doi.org/10.1016/j.pneurobio.2019.101696
Camassa, L. M. A., Lunde, L. K., Hoddevik, E. H., Stensland, M., Boldt, H. B., de Souza, G. A., … Amiry-Moghaddam, M. (2015). Mechanisms underlying AQP4 accumulation in astrocyte endfeet. Glia, 63(11), 2073-2091. https://doi.org/10.1002/glia.22878
Campbell, S. C., Munoz-Ballester, C., Chaunsali, L., Mills, W. A., 3rd, Yang, J. H., Sontheimer, H., & Robel, S. (2020). Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochemistry International, 133, 104628. https://doi.org/10.1016/j.neuint.2019.104628
Cauli, B., & Hamel, E. (2018). Brain perfusion and astrocytes. Trends in Neurosciences, 41(7), 409-413. https://doi.org/10.1016/j.tins.2018.04.010
Chakraborty, A., Kamermans, A., van Het Hof, B., Castricum, K., Aanhane, E., van Horssen, J., … de Vries, H. E. (2018). Angiopoietin like-4 as a novel vascular mediator in capillary cerebral amyloid angiopathy. Brain, 141(12), 3377-3388. https://doi.org/10.1093/brain/awy274
Chapman, V. M., Miller, D. R., Armstrong, D., & Caskey, C. T. (1989). Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proceedings of the National Academy of Sciences of the United States of America, 86(4), 1292-1296. https://doi.org/10.1073/pnas.86.4.1292
Chen, B., Yang, L., Chen, J., Chen, Y., Zhang, L., Wang, L., … Yu, H. (2019). Inhibition of Connexin43 hemichannels with Gap19 protects cerebral ischemia/reperfusion injury via the JAK2/STAT3 pathway in mice. Brain Research Bulletin, 146, 124-135. https://doi.org/10.1016/j.brainresbull.2018.12.009
Chen, Z. L., Yao, Y., Norris, E. H., Kruyer, A., Jno-Charles, O., Akhmerov, A., & Strickland, S. (2013). Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. The Journal of Cell Biology, 202(2), 381-395. https://doi.org/10.1083/jcb.201212032
Chever, O., Lee, C. Y., & Rouach, N. (2014). Astroglial connexin43 hemichannels tune basal excitatory synaptic transmission. The Journal of Neuroscience, 34(34), 11228-11232. https://doi.org/10.1523/JNEUROSCI.0015-14.2014
Chow, B. W., Nunez, V., Kaplan, L., Granger, A. J., Bistrong, K., Zucker, H. L., … Gu, C. (2020). Caveolae in CNS arterioles mediate neurovascular coupling. Nature, 579(7797), 106-110. https://doi.org/10.1038/s41586-020-2026-1
Chung Moh, M., Hoon Lee, L., & Shen, S. (2005). Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma. Journal of Hepatology, 42(6), 833-841. https://doi.org/10.1016/j.jhep.2005.01.025
Clasadonte, J., & Haydon, P. G. (2012). Astrocytes and epilepsy. In J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, & A. V. Delgado-Escueta (Eds.), Jasper's basic mechanisms of the epilepsies (4th ed.). Bethesda (MD): National Center for Biotechnology Information (US).
Clavreul, S., Abdeladim, L., Hernandez-Garzon, E., Niculescu, D., Durand, J., Ieng, S. H., … Loulier, K. (2019). Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nature Communications, 10(1), 4884. https://doi.org/10.1038/s41467-019-12791-5
Coelho-Santos, V., & Shih, A. Y. (2020). Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdisciplinary Reviews: Developmental Biology, 9(2), e363. https://doi.org/10.1002/wdev.363
Coggan, J. S., Cali, C., Keller, D., Agus, M., Boges, D., Abdellah, M., … Magistretti, P. J. (2018). A process for digitizing and simulating biologically realistic Oligocellular networks demonstrated for the neuro-Glio-vascular ensemble. Frontiers in Neuroscience, 12, 664. https://doi.org/10.3389/fnins.2018.00664
Coulter, D. A., & Steinhäuser, C. (2015). Role of astrocytes in epilepsy. Cold Spring Harbor Perspectives in Medicine, 5(3), a022434. https://doi.org/10.1101/cshperspect.a022434
Cserr, H. F., Cooper, D. N., Suri, P. K., & Patlak, C. S. (1981). Efflux of radiolabeled polyethylene glycols and albumin from rat brain. The American Journal of Physiology, 240(4), F319-F328. https://doi.org/10.1152/ajprenal.1981.240.4.F319
Cuddapah, V. A., Robel, S., Watkins, S., & Sontheimer, H. (2014). A neurocentric perspective on glioma invasion. Nature Reviews. Neuroscience, 15(7), 455-465. https://doi.org/10.1038/nrn3765
Dallerac, G., Chever, O., & Rouach, N. (2013). How do astrocytes shape synaptic transmission? Insights from electrophysiology. Frontiers in Cellular Neuroscience, 7, 159. https://doi.org/10.3389/fncel.2013.00159
Dalloz, C., Sarig, R., Fort, P., Yaffe, D., Bordais, A., Pannicke, T., … Rendon, A. (2003). Targeted inactivation of dystrophin gene product Dp71: Phenotypic impact in mouse retina. Human Molecular Genetics, 12(13), 1543-1554. https://doi.org/10.1093/hmg/ddg170
Daneman, R., Agalliu, D., Zhou, L., Kuhnert, F., Kuo, C. J., & Barres, B. A. (2009). Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 641-646. https://doi.org/10.1073/pnas.0805165106
Daneman, R., Zhou, L., Agalliu, D., Cahoy, J. D., Kaushal, A., & Barres, B. A. (2010). The mouse blood-brain barrier transcriptome: A new resource for understanding the development and function of brain endothelial cells. PLoS One, 5(10), e13741. https://doi.org/10.1371/journal.pone.0013741
Darmanis, S., Sloan, S. A., Croote, D., Mignardi, M., Chernikova, S., Samghababi, P., … Quake, S. R. (2017). Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Reports, 21(5), 1399-1410. https://doi.org/10.1016/j.celrep.2017.10.030
de Bellis, M., Pisani, F., Mola, M. G., Rosito, S., Simone, L., Buccoliero, C., … Frigeri, A. (2017). Translational readthrough generates new astrocyte AQP4 isoforms that modulate supramolecular clustering, glial endfeet localization, and water transport. Glia, 65(5), 790-803. https://doi.org/10.1002/glia.23126
de Lanerolle, N. C., Lee, T.-S., & Spencer, D. D. (2010). Astrocytes and epilepsy. Neurotherapeutics, 7(4), 424-438. https://doi.org/10.1016/j.nurt.2010.08.002
del Zoppo, G. J., & Milner, R. (2006). Integrin-matrix interactions in the cerebral microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(9), 1966-1975. https://doi.org/10.1161/01.ATV.0000232525.65682.a2
Dermietzel, R. (1973). Visualization by freeze-fracturing of regular structures in glial cell membranes. Naturwissenschaften, 60(4), 208. https://doi.org/10.1007/bf00599446
Doyle, J. P., Dougherty, J. D., Heiman, M., Schmidt, E. F., Stevens, T. R., Ma, G., … Heintz, N. (2008). Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell, 135(4), 749-762. https://doi.org/10.1016/j.cell.2008.10.029
Dubey, M., Brouwers, E., Hamilton, E. M. C., Stiedl, O., Bugiani, M., Koch, H., … Min, R. (2018). Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts. Annals of Neurology, 83(3), 636-649. https://doi.org/10.1002/ana.25190
Dubey, M., Bugiani, M., Ridder, M. C., Postma, N. L., Brouwers, E., Polder, E., … van der Knaap, M. S. (2015). Mice with megalencephalic leukoencephalopathy with cysts: A developmental angle. Annals of Neurology, 77(1), 114-131. https://doi.org/10.1002/ana.24307
Eid, T., Lee, T.-S. W., Thomas, M. J., Amiry-Moghaddam, M., Bjørnsen, L. P., Spencer, D. D., … de Lanerolle, N. C. (2005). Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1193-1198. https://doi.org/10.1073/pnas.0409308102
Eidsvaag, V. A., Enger, R., Hansson, H. A., Eide, P. K., & Nagelhus, E. A. (2017). Human and mouse cortical astrocytes differ in aquaporin-4 polarization toward microvessels. Glia, 65(6), 964-973. https://doi.org/10.1002/glia.23138
Eilam, R., Segal, M., Malach, R., Sela, M., Arnon, R., & Aharoni, R. (2018). Astrocyte disruption of neurovascular communication is linked to cortical damage in an animal model of multiple sclerosis. Glia, 66(5), 1098-1117. https://doi.org/10.1002/glia.23304
Elias, L. A., Wang, D. D., & Kriegstein, A. R. (2007). Gap junction adhesion is necessary for radial migration in the neocortex. Nature, 448(7156), 901-907 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17713529
El-Khoury, N., Braun, A., Hu, F., Pandey, M., Nedergaard, M., Lagamma, E. F., & Ballabh, P. (2006). Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatric Research, 59(5), 673-679. https://doi.org/10.1203/01.pdr.0000214975.85311.9c
Elorza-Vidal, X., Sirisi, S., Gaitan-Penas, H., Perez-Rius, C., Alonso-Gardon, M., Armand-Ugon, M., … Estevez, R. (2018). GlialCAM/MLC1 modulates LRRC8/VRAC currents in an indirect manner: Implications for megalencephalic leukoencephalopathy. Neurobiology of Disease, 119, 88-99. https://doi.org/10.1016/j.nbd.2018.07.031
Engelhorn, T., Savaskan, N. E., Schwarz, M. A., Kreutzer, J., Meyer, E. P., Hahnen, E., … Eyupoglu, I. Y. (2009). Cellular characterization of the peritumoral edema zone in malignant brain tumors. Cancer Science, 100(10), 1856-1862. https://doi.org/10.1111/j.1349-7006.2009.01259.x
Enger, R., Gundersen, G. A., Haj-Yasein, N. N., Eilert-Olsen, M., Thoren, A. E., Vindedal, G. F., … Nagelhus, E. A. (2012). Molecular scaffolds underpinning macroglial polarization: An analysis of retinal Muller cells and brain astrocytes in mouse. Glia, 60(12), 2018-2026. https://doi.org/10.1002/glia.22416
Estevez, R., Elorza-Vidal, X., Gaitan-Penas, H., Perez-Rius, C., Armand-Ugon, M., Alonso-Gardon, M., … Nunes, V. (2018). Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. European Journal of Medical Genetics, 61(1), 50-60. https://doi.org/10.1016/j.ejmg.2017.10.013
Ezan, P., Andre, P., Cisternino, S., Saubamea, B., Boulay, A. C., Doutremer, S., … Cohen-Salmon, M. (2012). Deletion of astroglial connexins weakens the blood-brain barrier. Journal of Cerebral Blood Flow and Metabolism, 32(8), 1457-1467. https://doi.org/10.1038/jcbfm.2012.45
Favre-Kontula, L., Rolland, A., Bernasconi, L., Karmirantzou, M., Power, C., Antonsson, B., & Boschert, U. (2008). GlialCAM, an immunoglobulin-like cell adhesion molecule is expressed in glial cells of the central nervous system. Glia, 56(6), 633-645. https://doi.org/10.1002/glia.20640
Foo, L. C., Allen, N. J., Bushong, E. A., Ventura, P. B., Chung, W. S., Zhou, L., … Barres, B. A. (2011). Development of a method for the purification and culture of rodent astrocytes. Neuron, 71(5), 799-811. https://doi.org/10.1016/j.neuron.2011.07.022
Formaggio, F., Saracino, E., Mola, M. G., Rao, S. B., Amiry-Moghaddam, M., Muccini, M., … Benfenati, V. (2019). LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. The FASEB Journal, 33(1), 101-113. https://doi.org/10.1096/fj.201701397RR
Fournier, A. P., Gauberti, M., Quenault, A., Vivien, D., Macrez, R., & Docagne, F. (2018). Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis. Journal of Cerebral Blood Flow and Metabolism, 39, 1258-1265. https://doi.org/10.1177/0271678X18754732
Freitas-Andrade, M., Wang, N., Bechberger, J. F., de Bock, M., Lampe, P. D., Leybaert, L., & Naus, C. C. (2019). Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. The Journal of Experimental Medicine, 216(4), 916-935. https://doi.org/10.1084/jem.20171452
Frydenlund, D. S., Bhardwaj, A., Otsuka, T., Mylonakou, M. N., Yasumura, T., Davidson, K. G., … Amiry-Moghaddam, M. (2006). Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(36), 13532-13536. https://doi.org/10.1073/pnas.0605796103
Fujita, A., Yamaguchi, H., Yamasaki, R., Cui, Y., Matsuoka, Y., Yamada, K. I., & Kira, J. I. (2018). Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson's disease animal model. Journal of Neuroinflammation, 15(1), 227. https://doi.org/10.1186/s12974-018-1251-0
Furman, C. S., Gorelick-Feldman, D. A., Davidson, K. G., Yasumura, T., Neely, J. D., Agre, P., & Rash, J. E. (2003). Aquaporin-4 square array assembly: Opposing actions of M1 and M23 isoforms. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13609-13614. https://doi.org/10.1073/pnas.2235843100
Gabery, S., Salinas, C. G., Paulsen, S. J., Ahnfelt-Ronne, J., Alanentalo, T., Baquero, A. F., … Knudsen, L. B. (2020). Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight, 5(6), e133429. https://doi.org/10.1172/jci.insight.133429
Ge, W. P., Miyawaki, A., Gage, F. H., Jan, Y. N., & Jan, L. Y. (2012). Local generation of glia is a major astrocyte source in postnatal cortex. Nature, 484(7394), 376-380. https://doi.org/10.1038/nature10959
Ghezali, G., Vasile, F., Curry, N., Fantham, M., Cheung, G., Ezan, P., … Rouach, N. (2020). Neuronal activity drives astroglial connexin 30 in perisynaptic processes and shapes its functions. Cerebral Cortex, 30(2), 753-766. https://doi.org/10.1093/cercor/bhz123
Giaume, C., Koulakoff, A., Roux, L., Holcman, D., & Rouach, N. (2010). Astroglial networks: A step further in neuroglial and gliovascular interactions. Nature Reviews. Neuroscience, 11(2), 87-99. https://doi.org/10.1038/nrn2757
Giepmans, B. N. (2004). Gap junctions and connexin-interacting proteins. Cardiovascular Research, 62(2), 233-245 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15094344
Gilbert, A., Vidal, X. E., Estevez, R., Cohen-Salmon, M., & Boulay, A. C. (2019). Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Structure & Function, 224(3), 1267-1278. https://doi.org/10.1007/s00429-019-01832-w
Giocanti-Auregan, A., Vacca, O., Benard, R., Cao, S., Siqueiros, L., Montanez, C., … Tadayoni, R. (2016). Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice. Glia, 64(5), 716-729. https://doi.org/10.1002/glia.22956
Girouard, H., Bonev, A. D., Hannah, R. M., Meredith, A., Aldrich, R. W., & Nelson, M. T. (2010). Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3811-3816. https://doi.org/10.1073/pnas.0914722107
Göbel, J., Engelhardt, E., Pelzer, P., Sakthivelu, V., Jahn, H. M., Jevtic, M., … Bergami, M. (2020). Mitochondria-endoplasmic reticulum contacts in reactive astrocytes promote vascular remodeling. Cell Metabolism, 31(4), 791-808.E8. https://doi.org/10.1016/j.cmet.2020.03.005
Gorter, J. A., Aronica, E., & van Vliet, E. A. (2019). The roof is leaking and a storm is raging: Repairing the blood-brain barrier in the fight against epilepsy. Epilepsy Currents, 19(3), 177-181. https://doi.org/10.1177/1535759719844750
Gritsenko, P., Leenders, W., & Friedl, P. (2017). Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochemistry and Cell Biology, 148(4), 395-406. https://doi.org/10.1007/s00418-017-1604-2
Gundersen, G. A., Vindedal, G. F., Skare, O., & Nagelhus, E. A. (2014). Evidence that pericytes regulate aquaporin-4 polarization in mouse cortical astrocytes. Brain Structure & Function, 219(6), 2181-2186. https://doi.org/10.1007/s00429-013-0629-0
Hafezi-Moghadam, A., Thomas, K. L., & Wagner, D. D. (2007). ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. American Journal of Physiology. Cell Physiology, 292(4), C1256-C1262. https://doi.org/10.1152/ajpcell.00563.2005
Halliday, M. R., Rege, S. V., Ma, Q., Zhao, Z., Miller, C. A., Winkler, E. A., & Zlokovic, B. V. (2016). Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 36(1), 216-227. https://doi.org/10.1038/jcbfm.2015.44
Hannocks, M. J., Pizzo, M. E., Huppert, J., Deshpande, T., Abbott, N. J., Thorne, R. G., & Sorokin, L. (2018). Molecular characterization of perivascular drainage pathways in the murine brain. Journal of Cerebral Blood Flow and Metabolism, 38(4), 669-686. https://doi.org/10.1177/0271678X17749689
Helms, H. C., Abbott, N. J., Burek, M., Cecchelli, R., Couraud, P. O., Deli, M. A., … Brodin, B. (2016). In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. Journal of Cerebral Blood Flow and Metabolism, 36(5), 862-890. https://doi.org/10.1177/0271678X16630991
Herve, J. C., Derangeon, M., Sarrouilhe, D., Giepmans, B. N., & Bourmeyster, N. (2012). Gap junctional channels are parts of multiprotein complexes. Biochimica et Biophysica Acta, 1818(8), 1844-1865. https://doi.org/10.1016/j.bbamem.2011.12.009
Heuser, K., Eid, T., Lauritzen, F., Thoren, A. E., Vindedal, G. F., Taubøll, E., … de Lanerolle, N. C. (2012). Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. Journal of Neuropathology and Experimental Neurology, 71(9), 814-825. https://doi.org/10.1097/NEN.0b013e318267b5af
Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T., & Kurachi, Y. (2001). An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. American Journal of Physiology. Cell Physiology, 281(3), C922-C931. https://doi.org/10.1152/ajpcell.2001.281.3.C922
Hinson, S. R., Romero, M. F., Popescu, B. F., Lucchinetti, C. F., Fryer, J. P., Wolburg, H., … Lennon, V. A. (2012). Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1245-1250. https://doi.org/10.1073/pnas.1109980108
Hirota, S., Clements, T. P., Tang, L. K., Morales, J. E., Lee, H. S., Oh, S. P., … McCarty, J. H. (2015). Neuropilin 1 balances beta8 integrin-activated TGFbeta signaling to control sprouting angiogenesis in the brain. Development, 142(24), 4363-4373. https://doi.org/10.1242/dev.113746
Hladky, S. B., & Barrand, M. A. (2016). Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers: A comparative account of mechanisms and roles. Fluids Barriers CNS, 13(1), 19. https://doi.org/10.1186/s12987-016-0040-3
Hladky, S. B., & Barrand, M. A. (2018). Elimination of substances from the brain parenchyma: Efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS, 15(1), 30. https://doi.org/10.1186/s12987-018-0113-6
Hoddevik, E. H., Khan, F. H., Rahmani, S., Ottersen, O. P., Boldt, H. B., & Amiry-Moghaddam, M. (2017). Factors determining the density of AQP4 water channel molecules at the brain-blood interface. Brain Structure & Function, 222(4), 1753-1766. https://doi.org/10.1007/s00429-016-1305-y
Hoddevik, E. H., Rao, S. B., Zahl, S., Boldt, H. B., Ottersen, O. P., & Amiry-Moghaddam, M. (2020). Organisation of extracellular matrix proteins laminin and agrin in pericapillary basal laminae in mouse brain. Brain Structure & Function, 225(2), 805-816. https://doi.org/10.1007/s00429-020-02036-3
Hoegg-Beiler, M. B., Sirisi, S., Orozco, I. J., Ferrer, I., Hohensee, S., Auberson, M., … Jentsch, T. J. (2014). Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nature Communications, 5, 3475. https://doi.org/10.1038/ncomms4475
Holt, K. H., Crosbie, R. H., Venzke, D. P., & Campbell, K. P. (2000). Biosynthesis of dystroglycan: Processing of a precursor propeptide. FEBS Letters, 468(1), 79-83. https://doi.org/10.1016/s0014-5793(00)01195-9
Holthoff, K., & Witte, O. W. (2000). Directed spatial potassium redistribution in rat neocortex. Glia, 29(3), 288-292. https://doi.org/10.1002/(sici)1098-1136(20000201)29:3<288::aid-glia10>3.0.co;2-8
Horng, S., Therattil, A., Moyon, S., Gordon, A., Kim, K., Argaw, A. T., … John, G. R. (2017). Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. The Journal of Clinical Investigation, 127(8), 3136-3151. https://doi.org/10.1172/JCI91301
Hwang, J., Vu, H. M., Kim, M. S., & Lim, H. H. (2019). Plasma membrane localization of MLC1 regulates cellular morphology and motility. Molecular Brain, 12(1), 116. https://doi.org/10.1186/s13041-019-0540-6
Ibraghimov-Beskrovnaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S. W., & Campbell, K. P. (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355(6362), 696-702. https://doi.org/10.1038/355696a0
Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., … Nedergaard, M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Science Translational Medicine, 4(147), 147ra111. https://doi.org/10.1126/scitranslmed.3003748
Iliff, J. J., Wang, M., Zeppenfeld, D. M., Venkataraman, A., Plog, B. A., Liao, Y., … Nedergaard, M. (2013). Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. The Journal of Neuroscience, 33(46), 18190-18199. https://doi.org/10.1523/JNEUROSCI.1592-13.2013
Imura, T., Tane, K., Toyoda, N., & Fushiki, S. (2008). Endothelial cell-derived bone morphogenetic proteins regulate glial differentiation of cortical progenitors. The European Journal of Neuroscience, 27(7), 1596-1606. https://doi.org/10.1111/j.1460-9568.2008.06134.x
Ivens, S., Kaufer, D., Flores, L. P., Bechmann, I., Zumsteg, D., Tomkins, O., … Friedman, A. (2007). TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain: A Journal of Neurology, 130(Pt 2), 535-547. https://doi.org/10.1093/brain/awl317
Jain, R. K., di Tomaso, E., Duda, D. G., Loeffler, J. S., Sorensen, A. G., & Batchelor, T. T. (2007). Angiogenesis in brain tumours. Nature Reviews. Neuroscience, 8(8), 610-622. https://doi.org/10.1038/nrn2175
Jellinger, K. A. (2003). Prevalence of cerebrovascular lesions in Parkinson's disease. A postmortem study. Acta Neuropathologica, 105(5), 415-419. https://doi.org/10.1007/s00401-003-0676-3
Jeworutzki, E., Lopez-Hernandez, T., Capdevila-Nortes, X., Sirisi, S., Bengtsson, L., Montolio, M., … Estevez, R. (2012). GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(−) channel auxiliary subunit. Neuron, 73(5), 951-961. https://doi.org/10.1016/j.neuron.2011.12.039
Kalman, M., Oszwald, E., & Adorjan, I. (2018). Appearance of beta-dystroglycan precedes the formation of glio-vascular end-feet in developing rat brain. European Journal of Histochemistry, 62(2), 2908. https://doi.org/10.4081/ejh.2018.2908
Katoozi, S., Skauli, N., Zahl, S., Deshpande, T., Ezan, P., Palazzo, C., … Amiry-Moghaddam, M. (2020). Uncoupling of the astrocyte syncytium differentially affects AQP4 isoforms. Cells, 9(2), 382. https://doi.org/10.3390/cells9020382
Kawauchi, S., Horibe, S., Sasaki, N., Hirata, K. I., & Rikitake, Y. (2019). A novel in vitro co-culture model to examine contact formation between astrocytic processes and cerebral vessels. Experimental Cell Research, 374(2), 333-341. https://doi.org/10.1016/j.yexcr.2018.12.006
Kim, J.-E., Yeo, S.-I., Ryu, H. J., Kim, M.-J., Kim, D.-S., Jo, S.-M., & Kang, T.-C. (2010). Astroglial loss and edema formation in the rat piriform cortex and hippocampus following pilocarpine-induced status epilepticus. The Journal of Comparative Neurology, 518(22), 4612-4628. https://doi.org/10.1002/cne.22482
Kim, K. J., Ramiro Diaz, J., Iddings, J. A., & Filosa, J. A. (2016). Vasculo-neuronal coupling: Retrograde vascular communication to brain neurons. The Journal of Neuroscience, 36(50), 12624-12639. https://doi.org/10.1523/JNEUROSCI.1300-16.2016
Kimbrough, I. F., Robel, S., Roberson, E. D., & Sontheimer, H. (2015). Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. Brain, 138(Pt 12), 3716-3733. https://doi.org/10.1093/brain/awv327
Kolar, K., Freitas-Andrade, M., Bechberger, J. F., Krishnan, H., Goldberg, G. S., Naus, C. C., & Sin, W. C. (2015). Podoplanin: A marker for reactive gliosis in gliomas and brain injury. Journal of Neuropathology and Experimental Neurology, 74(1), 64-74. https://doi.org/10.1097/NEN.0000000000000150
Korogod, N., Petersen, C. C., & Knott, G. W. (2015). Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife, 4, e05793. https://doi.org/10.7554/eLife.05793
Koval, M., Molina, S. A., & Burt, J. M. (2014). Mix and match: Investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Letters, 588(8), 1193-1204. https://doi.org/10.1016/j.febslet.2014.02.025
Kozoriz, M. G., Bechberger, J. F., Bechberger, G. R., Suen, M. W., Moreno, A. P., Maass, K., … Naus, C. C. (2010). The connexin43 C-terminal region mediates neuroprotection during stroke. Journal of Neuropathology and Experimental Neurology, 69(2), 196-206. https://doi.org/10.1097/NEN.0b013e3181cd44df
Kress, B. T., Iliff, J. J., Xia, M., Wang, M., Wei, H. S., Zeppenfeld, D., … Nedergaard, M. (2014). Impairment of paravascular clearance pathways in the aging brain. Annals of Neurology, 76(6), 845-861. https://doi.org/10.1002/ana.24271
Kubotera, H., Ikeshima-Kataoka, H., Hatashita, Y., Allegra Mascaro, A. L., Pavone, F. S., & Inoue, T. (2019). Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Scientific Reports, 9(1), 1263. https://doi.org/10.1038/s41598-018-37419-4
Kummer, B. R., Diaz, I., Wu, X., Aaroe, A. E., Chen, M. L., Iadecola, C., … Navi, B. B. (2019). Associations between cerebrovascular risk factors and parkinson disease. Annals of Neurology, 86(4), 572-581. https://doi.org/10.1002/ana.25564
Lanciotti, A., Brignone, M. S., Visentin, S., de Nuccio, C., Catacuzzeno, L., Mallozzi, C., … Ambrosini, E. (2016). Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes. Human Molecular Genetics, 25(8), 1543-1558. https://doi.org/10.1093/hmg/ddw032
Lanciotti, A., Brignone, M. S., Belfiore, M., Columba-Cabezas, S., Mallozzi, C., Vincentini, O., … Ambrosini, E. (2020). Megalencephalic leukoencephalopathy with subcortical cysts disease-linked MLC1 protein favors gap-junction intercellular communication by regulating connexin 43 trafficking in astrocytes. Cells, 9(6), 1425. https://doi.org/10.3390/cells9061425.
Langen, U. H., Ayloo, S., & Gu, C. (2019). Development and cell biology of the blood-brain barrier. Annual Review of Cell and Developmental Biology, 35, 591-613. https://doi.org/10.1146/annurev-cellbio-100617-062608
Langlet, F., Mullier, A., Bouret, S. G., Prevot, V., & Dehouck, B. (2013). Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. The Journal of Comparative Neurology, 521(15), 3389-3405. https://doi.org/10.1002/cne.23355
Lanjakornsiripan, D., Pior, B. J., Kawaguchi, D., Furutachi, S., Tahara, T., Katsuyama, Y., … Gotoh, Y. (2018). Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nature Communications, 9(1), 1623. https://doi.org/10.1038/s41467-018-03940-3
Lee, D. J., Hsu, M. S., Seldin, M. M., Arellano, J. L., & Binder, D. K. (2012). Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Experimental Neurology, 235(1), 246-255. https://doi.org/10.1016/j.expneurol.2012.02.002
Lee, J., Lund-Smith, C., Borboa, A., Gonzalez, A. M., Baird, A., & Eliceiri, B. P. (2009). Glioma-induced remodeling of the neurovascular unit. Brain Research, 1288, 125-134. https://doi.org/10.1016/j.brainres.2009.06.095
Lee, M. L., Martinez-Lozada, Z., Krizman, E. N., & Robinson, M. B. (2017). Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. Journal of Neurochemistry, 143(5), 489-506. https://doi.org/10.1111/jnc.14135
Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., … Kim, K. W. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nature Medicine, 9(7), 900-906. https://doi.org/10.1038/nm889
Levy, A. F., Zayats, M., Guerrero-Cazares, H., Quinones-Hinojosa, A., & Searson, P. C. (2014). Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D. PLoS One, 9(3), e92165. https://doi.org/10.1371/journal.pone.0092165
Li, G., Liu, X., Liu, Z., & Su, Z. (2015). Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Molecular Medicine Reports, 11(2), 1188-1194. https://doi.org/10.3892/mmr.2014.2867
Li, M., Li, Z., Yao, Y., Jin, W. N., Wood, K., Liu, Q., … Hao, J. (2017). Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proceedings of the National Academy of Sciences of the United States of America, 114(3), E396-E405. https://doi.org/10.1073/pnas.1612930114
Liebner, S., Corada, M., Bangsow, T., Babbage, J., Taddei, A., Czupalla, C. J., … Dejana, E. (2008). Wnt/beta-catenin signaling controls development of the blood-brain barrier. The Journal of Cell Biology, 183(3), 409-417. https://doi.org/10.1083/jcb.200806024
Lien, C. F., Mohanta, S. K., Frontczak-Baniewicz, M., Swinny, J. D., Zablocka, B., & Gorecki, D. C. (2012). Absence of glial alpha-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. The Journal of Biological Chemistry, 287(49), 41374-41385. https://doi.org/10.1074/jbc.M112.400044
Lien, C. F., Vlachouli, C., Blake, D. J., Simons, J. P., & Gorecki, D. C. (2004). Differential spatio-temporal expression of alpha-dystrobrevin-1 during mouse development. Gene Expression Patterns, 4(5), 583-593. https://doi.org/10.1016/j.modgep.2004.01.015
Lind, B. L., Brazhe, A. R., Jessen, S. B., Tan, F. C., & Lauritzen, M. J. (2013). Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proceedings of the National Academy of Sciences of the United States of America, 110(48), E4678-E4687. https://doi.org/10.1073/pnas.1310065110
Lind, B. L., Jessen, S. B., Lonstrup, M., Josephine, C., Bonvento, G., & Lauritzen, M. (2018). Fast Ca(2+) responses in astrocyte end-feet and neurovascular coupling in mice. Glia, 66(2), 348-358. https://doi.org/10.1002/glia.23246
Lisjak, M., Potokar, M., Rituper, B., Jorgacevski, J., & Zorec, R. (2017). AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes. The Journal of Neuroscience, 37(44), 10748-10756. https://doi.org/10.1523/JNEUROSCI.0776-17.2017
Lisjak, M., Potokar, M., Zorec, R., & Jorgacevski, J. (2020). Indirect role of AQP4b and AQP4d isoforms in dynamics of astrocyte volume and orthogonal arrays of particles. Cells, 9(3), 735. https://doi.org/10.3390/cells9030735
Lopez-Hernandez, T., Ridder, M. C., Montolio, M., Capdevila-Nortes, X., Polder, E., Sirisi, S., … van der Knaap, M. S. (2011). Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. American Journal of Human Genetics, 88(4), 422-432. https://doi.org/10.1016/j.ajhg.2011.02.009
Lopez-Hernandez, T., Sirisi, S., Capdevila-Nortes, X., Montolio, M., Fernandez-Duenas, V., Scheper, G. C., … Estevez, R. (2011). Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 20(16), 3266-3277. https://doi.org/10.1093/hmg/ddr238
Löscher, W., & Friedman, A. (2020). Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: A cause, consequence, or both? International Journal of Molecular Sciences, 21(2), 591. https://doi.org/10.3390/ijms21020591
Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., … Kipnis, J. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523, 337-341. https://doi.org/10.1038/nature14432
Lunde, L. K., Camassa, L. M., Hoddevik, E. H., Khan, F. H., Ottersen, O. P., Boldt, H. B., & Amiry-Moghaddam, M. (2015). Postnatal development of the molecular complex underlying astrocyte polarization. Brain Structure & Function, 220(4), 2087-2101. https://doi.org/10.1007/s00429-014-0775-z
Lundgaard, I., Lu, M. L., Yang, E., Peng, W., Mestre, H., Hitomi, E., … Nedergaard, M. (2017). Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism, 37(6), 2112-2124. https://doi.org/10.1177/0271678X16661202
Lutz, S. E., Zhao, Y., Gulinello, M., Lee, S. C., Raine, C. S., & Brosnan, C. F. (2009). Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. The Journal of Neuroscience, 29(24), 7743-7752. https://doi.org/10.1523/JNEUROSCI.0341-09.2009
Lynn, B. D., Tress, O., May, D., Willecke, K., & Nagy, J. I. (2011). Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. The European Journal of Neuroscience, 34(11), 1783-1793. https://doi.org/10.1111/j.1460-9568.2011.07900.x
Ma, S., Kwon, H. J., Johng, H., Zang, K., & Huang, Z. (2013). Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biology, 11(1), e1001469. https://doi.org/10.1371/journal.pbio.1001469
Malik, A. R., Lips, J., Gorniak-Walas, M., Broekaart, D. W. M., Asaro, A., Kuffner, M. T. C., … Willnow, T. E. (2020). SorCS2 facilitates release of endostatin from astrocytes and controls post-stroke angiogenesis. Glia, 68(6), 1304-1316. https://doi.org/10.1002/glia.23778
Maoz, B. M., Herland, A., FitzGerald, E. A., Grevesse, T., Vidoudez, C., Pacheco, A. R., … Parker, K. K. (2018). A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nature Biotechnology, 36(9), 865-874. https://doi.org/10.1038/nbt.4226
Marchi, N., Angelov, L., Masaryk, T., Fazio, V., Granata, T., Hernandez, N., … Janigro, D. (2007). Seizure-promoting effect of blood-brain barrier disruption. Epilepsia, 48(4), 732-742. https://doi.org/10.1111/j.1528-1167.2007.00988.x
Marchi, N., & Lerner-Natoli, M. (2013). Cerebrovascular remodeling and epilepsy. The Neuroscientist, 19(3), 304-312. https://doi.org/10.1177/1073858412462747
Masaki, K. (2015). Early disruption of glial communication via connexin gap junction in multiple sclerosis, Balo's disease and neuromyelitis optica. Neuropathology, 35, 469-480. https://doi.org/10.1111/neup.12211
Masaki, K., Suzuki, S. O., Matsushita, T., Matsuoka, T., Imamura, S., Yamasaki, R., … Kira, J. (2013). Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica. PLoS One, 8(8), e72919. https://doi.org/10.1371/journal.pone.0072919PONE-D-13-17441
Mathiisen, T. M., Lehre, K. P., Danbolt, N. C., & Ottersen, O. P. (2010). The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia, 58(9), 1094-1103. https://doi.org/10.1002/glia.20990
McCaslin, A. F., Chen, B. R., Radosevich, A. J., Cauli, B., & Hillman, E. M. (2011). In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: Implications for neurovascular coupling. Journal of Cerebral Blood Flow and Metabolism, 31(3), 795-806. https://doi.org/10.1038/jcbfm.2010.204
Medici, V., Frassoni, C., Tassi, L., Spreafico, R., & Garbelli, R. (2011). Aquaporin 4 expression in control and epileptic human cerebral cortex. Brain Research, 1367, 330-339. https://doi.org/10.1016/j.brainres.2010.10.005
Merlini, M., Meyer, E. P., Ulmann-Schuler, A., & Nitsch, R. M. (2011). Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathologica, 122(3), 293-311. https://doi.org/10.1007/s00401-011-0834-y
Mestre, H., Du, T., Sweeney, A. M., Liu, G., Samson, A. J., Peng, W., … Nedergaard, M. (2020). Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science, 367(6483), eaax7171. https://doi.org/10.1126/science.aax7171
Mestre, H., Hablitz, L. M., Xavier, A. L., Feng, W., Zou, W., Pu, T., … Nedergaard, M. (2018). Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife, 7, e40070. https://doi.org/10.7554/eLife.40070
Metcalf, T. U., Baxter, V. K., Nilaratanakul, V., & Griffin, D. E. (2013). Recruitment and retention of B cells in the central nervous system in response to alphavirus encephalomyelitis. Journal of Virology, 87(5), 2420-2429. https://doi.org/10.1128/JVI.01769-12
Metea, M. R., Kofuji, P., & Newman, E. A. (2007). Neurovascular coupling is not mediated by potassium siphoning from glial cells. The Journal of Neuroscience, 27(10), 2468-2471. https://doi.org/10.1523/jneurosci.3204-06.2007
Mi, H., Haeberle, H., & Barres, B. A. (2001). Induction of astrocyte differentiation by endothelial cells. The Journal of Neuroscience, 21(5), 1538-1547 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11222644
Mishra, A., Reynolds, J. P., Chen, Y., Gourine, A. V., Rusakov, D. A., & Attwell, D. (2016). Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nature Neuroscience, 19(12), 1619-1627. https://doi.org/10.1038/nn.4428
Miyata, S. (2015). New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers in Neuroscience, 9, 390. https://doi.org/10.3389/fnins.2015.00390
Mizee, M. R., Wooldrik, D., Lakeman, K. A., van het Hof, B., Drexhage, J. A., Geerts, D., … Reijerkerk, A. (2013). Retinoic acid induces blood-brain barrier development. The Journal of Neuroscience, 33(4), 1660-1671. https://doi.org/10.1523/JNEUROSCI.1338-12.2013
Montagne, A., Barnes, S. R., Sweeney, M. D., Halliday, M. R., Sagare, A. P., Zhao, Z., … Zlokovic, B. V. (2015). Blood-brain barrier breakdown in the aging human hippocampus. Neuron, 85(2), 296-302. https://doi.org/10.1016/j.neuron.2014.12.032
Montagne, A., Nation, D. A., Pa, J., Sweeney, M. D., Toga, A. W., & Zlokovic, B. V. (2016). Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathologica, 131(5), 687-707. https://doi.org/10.1007/s00401-016-1570-0
Montagne, A., Nation, D. A., Sagare, A. P., Barisano, G., Sweeney, M. D., Chakhoyan, A., … Zlokovic, B. V. (2020). APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature, 581(7806), 71-76. https://doi.org/10.1038/s41586-020-2247-3
Montagne, A., Zhao, Z., & Zlokovic, B. V. (2017). Alzheimer's disease: A matter of blood-brain barrier dysfunction? The Journal of Experimental Medicine, 214(11), 3151-3169. https://doi.org/10.1084/jem.20171406
Moore, C. I., & Cao, R. (2008). The hemo-neural hypothesis: On the role of blood flow in information processing. Journal of Neurophysiology, 99(5), 2035-2047. https://doi.org/10.1152/jn.01366.2006
Moore, S. A., Saito, F., Chen, J., Michele, D. E., Henry, M. D., Messing, A., … Campbell, K. P. (2002). Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature, 418(6896), 422-425. https://doi.org/10.1038/nature00838nature00838
Morita, S., Furube, E., Mannari, T., Okuda, H., Tatsumi, K., Wanaka, A., & Miyata, S. (2016). Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell and Tissue Research, 363(2), 497-511. https://doi.org/10.1007/s00441-015-2207-7
Moroni, R. F., Inverardi, F., Regondi, M. C., Pennacchio, P., & Frassoni, C. (2015). Developmental expression of Kir4.1 in astrocytes and oligodendrocytes of rat somatosensory cortex and hippocampus. International Journal of Developmental Neuroscience, 47(Pt B), 198-205. https://doi.org/10.1016/j.ijdevneu.2015.09.004
Mullier, A., Bouret, S. G., Prevot, V., & Dehouck, B. (2010). Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. The Journal of Comparative Neurology, 518(7), 943-962. https://doi.org/10.1002/cne.22273
Munk, A. S., Wang, W., Bechet, N. B., Eltanahy, A. M., Cheng, A. X., Sigurdsson, B., … Lundgaard, I. (2019). PDGF-B is required for development of the Glymphatic system. Cell Reports, 26(11), 2955-2969 e2953. https://doi.org/10.1016/j.celrep.2019.02.050
Murlidharan, G., Crowther, A., Reardon, R. A., Song, J., & Asokan, A. (2016). Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight, 1(14), e88034. https://doi.org/10.1172/jci.insight.88034
Naba, A., Clauser, K. R., Hoersch, S., Liu, H., Carr, S. A., & Hynes, R. O. (2012). The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular & Cellular Proteomics, 11(4), M111 014647. https://doi.org/10.1074/mcp.M111.014647
Nagao, M., Ogata, T., Sawada, Y., & Gotoh, Y. (2016). Zbtb20 promotes astrocytogenesis during neocortical development. Nature Communications, 7, 11102. https://doi.org/10.1038/ncomms11102
Nagelhus, E. A., Veruki, M. L., Torp, R., Haug, F. M., Laake, J. H., Nielsen, S., … Ottersen, O. P. (1998). Aquaporin-4 water channel protein in the rat retina and optic nerve: Polarized expression in Muller cells and fibrous astrocytes. The Journal of Neuroscience, 18(7), 2506-2519 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9502811
Neely, J. D., Amiry-Moghaddam, M., Ottersen, O. P., Froehner, S. C., Agre, P., & Adams, M. E. (2001). Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 14108-14113. https://doi.org/10.1073/pnas.241508198
Nicchia, G. P., Cogotzi, L., Rossi, A., Basco, D., Brancaccio, A., Svelto, M., & Frigeri, A. (2008). Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex. Journal of Neurochemistry, 105(6), 2156-2165. https://doi.org/10.1111/j.1471-4159.2008.05302.x
Nicchia, G. P., Srinivas, M., Li, W., Brosnan, C. F., Frigeri, A., & Spray, D. C. (2005). New possible roles for aquaporin-4 in astrocytes: Cell cytoskeleton and functional relationship with connexin43. The FASEB Journal, 19(12), 1674-1676. https://doi.org/10.1096/fj.04-3281fje
Nielsen, S., Nagelhus, E. A., Amiry-Moghaddam, M., Bourque, C., Agre, P., & Ottersen, O. P. (1997). Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain. The Journal of Neuroscience, 17(1), 171-180 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8987746
Nippert, A. R., Biesecker, K. R., & Newman, E. A. (2018). Mechanisms mediating functional hyperemia in the brain. The Neuroscientist, 24(1), 73-83. https://doi.org/10.1177/1073858417703033
Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G., & Michikawa, M. (2011). Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. The Journal of Biological Chemistry, 286(20), 17536-17542. https://doi.org/10.1074/jbc.M111.225532
Nizar, K., Uhlirova, H., Tian, P., Saisan, P. A., Cheng, Q., Reznichenko, L., … Devor, A. (2013). In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. The Journal of Neuroscience, 33(19), 8411-8422. https://doi.org/10.1523/JNEUROSCI.3285-12.2013
Noel, G., Tham, D. K. L., MacVicar, B. A., & Moukhles, H. (2020). Agrin plays a major role in the coalescence of the aquaporin-4 clusters induced by gamma-1-containing laminin. The Journal of Comparative Neurology, 528(3), 407-418. https://doi.org/10.1002/cne.24763
Noell, S., Fallier-Becker, P., Beyer, C., Kroger, S., Mack, A. F., & Wolburg, H. (2007). Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. The European Journal of Neuroscience, 26(8), 2109-2118. https://doi.org/10.1111/j.1460-9568.2007.05850.x
Noell, S., Fallier-Becker, P., Deutsch, U., Mack, A. F., & Wolburg, H. (2009). Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell and Tissue Research, 337(2), 185-195. https://doi.org/10.1007/s00441-009-0812-z
Noell, S., Wolburg-Buchholz, K., Mack, A. F., Beedle, A. M., Satz, J. S., Campbell, K. P., … Fallier-Becker, P. (2011). Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. The European Journal of Neuroscience, 33(12), 2179-2186. https://doi.org/10.1111/j.1460-9568.2011.07688.x
Noell, S., Wolburg-Buchholz, K., Mack, A. F., Ritz, R., Tatagiba, M., Beschorner, R., … Fallier-Becker, P. (2012). Dynamics of expression patterns of AQP4, dystroglycan, agrin and matrix metalloproteinases in human glioblastoma. Cell and Tissue Research, 347(2), 429-441. https://doi.org/10.1007/s00441-011-1321-4
Nomura, K., Hiyama, T. Y., Sakuta, H., Matsuda, T., Lin, C. H., Kobayashi, K., … Noda, M. (2019). [Na(+)] increases in body fluids sensed by central Nax induce sympathetically mediated blood pressure elevations via H(+)-dependent activation of ASIC1a. Neuron, 101(1), 60-75 e66. https://doi.org/10.1016/j.neuron.2018.11.017
Norris, G. T., & Kipnis, J. (2019). Immune cells and CNS physiology: Microglia and beyond. The Journal of Experimental Medicine, 216(1), 60-70. https://doi.org/10.1084/jem.20180199
Nwaobi, S. E., Cuddapah, V. A., Patterson, K. C., Randolph, A. C., & Olsen, M. L. (2016). The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathologica, 132(1), 1-21. https://doi.org/10.1007/s00401-016-1553-1
Olk, S., Zoidl, G., & Dermietzel, R. (2009). Connexins, cell motility, and the cytoskeleton. Cell Motility and the Cytoskeleton, 66(11), 1000-1016. https://doi.org/10.1002/cm.20404
Omidi, Y., Campbell, L., Barar, J., Connell, D., Akhtar, S., & Gumbleton, M. (2003). Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Research, 990(1-2), 95-112. https://doi.org/10.1016/s0006-8993(03)03443-7
Palazzo, C., Buccoliero, C., Mola, M. G., Abbrescia, P., Nicchia, G. P., Trojano, M., & Frigeri, A. (2019). AQP4ex is crucial for the anchoring of AQP4 at the astrocyte end-feet and for neuromyelitis optica antibody binding. Acta Neuropathologica Communications, 7(1), 51. https://doi.org/10.1186/s40478-019-0707-5
Pannasch, U., Freche, D., Dallerac, G., Ghezali, G., Escartin, C., Ezan, P., … Rouach, N. (2014). Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nature Neuroscience, 17(4), 549-558. https://doi.org/10.1038/nn.3662
Patel, A. B., Lai, J. C., Chowdhury, G. M., Hyder, F., Rothman, D. L., Shulman, R. G., & Behar, K. L. (2014). Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5385-5390. https://doi.org/10.1073/pnas.1403576111
Patel, D. C., Tewari, B. P., Chaunsali, L., & Sontheimer, H. (2019). Neuron-glia interactions in the pathophysiology of epilepsy. Nature Reviews Neuroscience, 20(5), 282-297. https://doi.org/10.1038/s41583-019-0126-4
Patrizz, A., Doran, S. J., Chauhan, A., Ahnstedt, H., Roy-O'Reilly, M., Lai, Y. J., … McCullough, L. D. (2020). EMMPRIN/CD147 plays a detrimental role in clinical and experimental ischemic stroke. Aging (Albany NY), 12(6), 5121-5139. https://doi.org/10.18632/aging.102935
Pavelko, K. D., Bell, M. P., Harrington, S. M., & Dong, H. (2017). B7-H1 influences the accumulation of virus-specific tissue resident memory T cells in the central nervous system. Frontiers in Immunology, 8, 1532. https://doi.org/10.3389/fimmu.2017.01532
Pekny, M., Wilhelmsson, U., Tatlisumak, T., & Pekna, M. (2019). Astrocyte activation and reactive gliosis-A new target in stroke? Neuroscience Letters, 689, 45-55. https://doi.org/10.1016/j.neulet.2018.07.021
Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10625-10629. https://doi.org/10.1073/pnas.91.22.10625
Pittock, S. J., & Lucchinetti, C. F. (2015). Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: A decade later. Annals of the new York Academy of Sciences, 1366, 20-39. https://doi.org/10.1111/nyas.12794
Pivonkova, H., Hermanova, Z., Kirdajova, D., Awadova, T., Malinsky, J., Valihrach, L., … Anderova, M. (2018). The contribution of TRPV4 channels to astrocyte volume regulation and brain edema formation. Neuroscience, 394, 127-143. https://doi.org/10.1016/j.neuroscience.2018.10.028
Pocsai, K., & Kalman, M. (2015). Glial and perivascular structures in the subfornical organ: Distinguishing the shell and core. The Journal of Histochemistry and Cytochemistry, 63(5), 367-383. https://doi.org/10.1369/0022155415575027
Prager, O., Kamintsky, L., Hasam-Henderson, L. A., Schoknecht, K., Wuntke, V., Papageorgiou, I., … Kovács, R. (2019). Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction. Epilepsia, 60(2), 322-336. https://doi.org/10.1111/epi.14631
Prasad, S., Hu, S., Sheng, W. S., Chauhan, P., Singh, A., & Lokensgard, J. R. (2017). The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis. Journal of Neuroinflammation, 14(1), 82. https://doi.org/10.1186/s12974-017-0860-3
Prineas, J. W., & Lee, S. (2019). Multiple sclerosis: Destruction and regeneration of astrocytes in acute lesions. Journal of Neuropathology and Experimental Neurology, 78(2), 140-156. https://doi.org/10.1093/jnen/nly121
Proctor, J. M., Zang, K., Wang, D., Wang, R., & Reichardt, L. F. (2005). Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. The Journal of Neuroscience, 25(43), 9940-9948. https://doi.org/10.1523/JNEUROSCI.3467-05.2005
Rash, J. E., Davidson, K. G., Yasumura, T., & Furman, C. S. (2004). Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly. Neuroscience, 129(4), 915-934. https://doi.org/10.1016/j.neuroscience.2004.06.076
Ren, H., Luo, C., Feng, Y., Yao, X., Shi, Z., Liang, F., … Su, H. (2017). Omega-3 polyunsaturated fatty acids promote amyloid-beta clearance from the brain through mediating the function of the glymphatic system. The FASEB Journal, 31(1), 282-293. https://doi.org/10.1096/fj.201600896
Rennels, M. L., Blaumanis, O. R., & Grady, P. A. (1990). Rapid solute transport throughout the brain via paravascular fluid pathways. Advances in Neurology, 52, 431-439 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2396537
Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K., & Grady, P. A. (1985). Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Research, 326(1), 47-63. https://doi.org/10.1016/0006-8993(85)91383-6
Rothhammer, V., & Quintana, F. J. (2015). Control of autoimmune CNS inflammation by astrocytes. Seminars in Immunopathology, 37(6), 625-638. https://doi.org/10.1007/s00281-015-0515-310.1007/s00281-015-0515-3
Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., & Giaume, C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907), 1551-1555 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19056987
Rüber, T., David, B., Lüchters, G., Nass, R. D., Friedman, A., Surges, R., … Elger, C. E. (2018). Evidence for peri-ictal blood-brain barrier dysfunction in patients with epilepsy. Brain, 141(10), 2952-2965. https://doi.org/10.1093/brain/awy242
Rungta, R. L., Chaigneau, E., Osmanski, B. F., & Charpak, S. (2018). Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron, 99(2), 362-375 e364. https://doi.org/10.1016/j.neuron.2018.06.012
Rusnati, M., Camozzi, M., Moroni, E., Bottazzi, B., Peri, G., Indraccolo, S., … Presta, M. (2004). Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood, 104(1), 92-99. https://doi.org/10.1182/blood-2003-10-3433
Saez, J. C., & Leybaert, L. (2014). Hunting for connexin hemichannels. FEBS Letters, 588(8), 1205-1211. https://doi.org/10.1016/j.febslet.2014.03.004
Sapkota, D., Lake, A. M., Yang, W., Yang, C., Wesseling, H., Guise, A., … Dougherty, J. D. (2019). Cell-type-specific profiling of alternative translation identifies regulated protein isoform variation in the mouse brain. Cell Reports, 26(3), 594-607 e597. https://doi.org/10.1016/j.celrep.2018.12.077
Sato, J., Horibe, S., Kawauchi, S., Sasaki, N., Hirata, K. I., & Rikitake, Y. (2018). Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and alpha-syntrophin in aquaporin-4 expression. Journal of Neurochemistry, 147(4), 495-513. https://doi.org/10.1111/jnc.14548
Saubamea, B., Cochois-Guegan, V., Cisternino, S., & Scherrmann, J. M. (2012). Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. Journal of Cerebral Blood Flow and Metabolism, 32(1), 81-92. https://doi.org/10.1038/jcbfm.2011.109
Schachtele, S. J., Hu, S., Sheng, W. S., Mutnal, M. B., & Lokensgard, J. R. (2014). Glial cells suppress postencephalitic CD8+ T lymphocytes through PD-L1. Glia, 62(10), 1582-1594. https://doi.org/10.1002/glia.22701
Schaeffer, M., Langlet, F., Lafont, C., Molino, F., Hodson, D. J., Roux, T., … Mollard, P. (2013). Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1512-1517. https://doi.org/10.1073/pnas.1212137110
Segarra, M., Aburto, M. R., Cop, F., Llao-Cid, C., Hartl, R., Damm, M., … Acker-Palmer, A. (2018). Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science, 361(6404), eaao2861. https://doi.org/10.1126/science.aao2861
Seifert, G., Carmignoto, G., & Steinhäuser, C. (2010). Astrocyte dysfunction in epilepsy. Brain Research Reviews, 63(1), 212-221. https://doi.org/10.1016/j.brainresrev.2009.10.004
Seiffert, E., Dreier, J. P., Ivens, S., Bechmann, I., Tomkins, O., Heinemann, U., & Friedman, A. (2004). Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. The Journal of Neuroscience, 24(36), 7829-7836. https://doi.org/10.1523/JNEUROSCI.1751-04.2004
Sene, A., Tadayoni, R., Pannicke, T., Wurm, A., el Mathari, B., Benard, R., … Rendon, A. (2009). Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PLoS One, 4(10), e7329. https://doi.org/10.1371/journal.pone.0007329
Sharma, R., Fischer, M. T., Bauer, J., Felts, P. A., Smith, K. J., Misu, T., … Lassmann, H. (2010). Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathologica, 120(2), 223-236. https://doi.org/10.1007/s00401-010-0704-z
Shi, S. X., Li, Y. J., Shi, K., Wood, K., Ducruet, A. F., & Liu, Q. (2020). IL (interleukin)-15 bridges astrocyte-microglia crosstalk and exacerbates brain injury following intracerebral hemorrhage. Stroke, 51(3), 967-974. https://doi.org/10.1161/STROKEAHA.119.028638
Shindo, A., Maki, T., Mandeville, E. T., Liang, A. C., Egawa, N., Itoh, K., … Arai, K. (2016). Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke, 47(4), 1094-1100. https://doi.org/10.1161/STROKEAHA.115.012133
Shwetank, Frost, E. L., Mockus, T. E., Ren, H. M., & Toprak, M. (2019). PD-1 dynamically regulates inflammation and development of brain-resident memory CD8 T cells during persistent viral encephalitis. Frontiers in Immunology, 10, 783. https://doi.org/10.3389/fimmu.2019.00783.
Simard, M., Arcuino, G., Takano, T., Liu, Q. S., & Nedergaard, M. (2003). Signaling at the gliovascular interface. The Journal of Neuroscience, 23(27), 9254-9262 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14534260
Simon, M. J., Wang, M. X., Murchison, C. F., Roese, N. E., Boespflug, E. L., Woltjer, R. L., & Iliff, J. J. (2018). Transcriptional network analysis of human astrocytic endfoot genes reveals region-specific associations with dementia status and tau pathology. Scientific Reports, 8(1), 12389. https://doi.org/10.1038/s41598-018-30779-x
Simpson, I. A., & Davies, P. (1994). Reduced glucose transporter concentrations in brains of patients with Alzheimer's disease. Annals of Neurology, 36(5), 800-801. https://doi.org/10.1002/ana.410360522
Sin, W. C., Aftab, Q., Bechberger, J. F., Leung, J. H., Chen, H., & Naus, C. C. (2016). Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene, 35(12), 1504-1516. https://doi.org/10.1038/onc.2015.210
Siqueira, M., Francis, D., Gisbert, D., Gomes, F. C. A., & Stipursky, J. (2018). Radial glia cells control angiogenesis in the developing cerebral cortex through TGF-beta1 signaling. Molecular Neurobiology, 55(5), 3660-3675. https://doi.org/10.1007/s12035-017-0557-8
Sirisi, S., Elorza-Vidal, X., Arnedo, T., Armand-Ugon, M., Callejo, G., Capdevila-Nortes, X., … Estevez, R. (2017). Depolarization causes the formation of a ternary complex between GlialCAM, MLC1 and ClC-2 in astrocytes: Implications in megalencephalic leukoencephalopathy. Human Molecular Genetics, 26(13), 2436-2450. https://doi.org/10.1093/hmg/ddx134
Sixt, M., Engelhardt, B., Pausch, F., Hallmann, R., Wendler, O., & Sorokin, L. M. (2001). Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. The Journal of Cell Biology, 153(5), 933-946 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11381080
Smith, A. J., Yao, X., Dix, J. A., Jin, B. J., & Verkman, A. S. (2017). Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife, 6, e27679. https://doi.org/10.7554/eLife.27679
Sofroniew, M. V. (2015). Astrocyte barriers to neurotoxic inflammation. Nature Reviews. Neuroscience, 16(5), 249-263. https://doi.org/10.1038/nrn3898
Souttou, S., Benabdesselam, R., Siqueiros-Marquez, L., Sifi, M., Deliba, M., Vacca, O., … Dorbani-Mamine, L. (2019). Expression and localization of dystrophins and beta-dystroglycan in the hypothalamic supraoptic nuclei of rat from birth to adulthood. Acta Histochemica, 121(2), 218-226. https://doi.org/10.1016/j.acthis.2018.12.001
Srivastava, R., Aslam, M., Kalluri, S. R., Schirmer, L., Buck, D., Tackenberg, B., … Hemmer, B. (2012). Potassium channel KIR4.1 as an immune target in multiple sclerosis. The New England Journal of Medicine, 367(2), 115-123. https://doi.org/10.1056/NEJMoa1110740
Stathias, V., Jermakowicz, A. M., Maloof, M. E., Forlin, M., Walters, W., Suter, R. K., … Ayad, N. G. (2018). Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nature Communications, 9(1), 5315. https://doi.org/10.1038/s41467-018-07659-z
Steelman, A. J., Smith, R., 3rd, Welsh, C. J., & Li, J. (2013). Galectin-9 protein is up-regulated in astrocytes by tumor necrosis factor and promotes encephalitogenic T-cell apoptosis. The Journal of Biological Chemistry, 288(33), 23776-23787. https://doi.org/10.1074/jbc.M113.451658
Steinhäuser, C., & Seifert, G. (2012). Astrocyte dysfunction in epilepsy. In J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, & A. V. Delgado-Escueta (Eds.), Jasper's basic mechanisms of the epilepsies (4th ed.). Bethesda, MD: National Center for Biotechnology Information (US).
Sun, W., McConnell, E., Pare, J. F., Xu, Q., Chen, M., Peng, W., … Nedergaard, M. (2013). Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science, 339(6116), 197-200. https://doi.org/10.1126/science.1226740
Takano, T., Tian, G. F., Peng, W., Lou, N., Libionka, W., Han, X., & Nedergaard, M. (2006). Astrocyte-mediated control of cerebral blood flow. Nature Neuroscience, 9(2), 260-267. https://doi.org/10.1038/nn1623
Tang, G., & Yang, G. Y. (2016). Aquaporin-4: A potential therapeutic target for cerebral edema. International Journal of Molecular Sciences, 17(10), 1413. https://doi.org/10.3390/ijms17101413
Teijido, O., Casaroli-Marano, R., Kharkovets, T., Aguado, F., Zorzano, A., Palacin, M., … Estevez, R. (2007). Expression patterns of MLC1 protein in the central and peripheral nervous systems. Neurobiology of Disease, 26(3), 532-545. https://doi.org/10.1016/j.nbd.2007.01.016
Teubner, B., Michel, V., Pesch, J., Lautermann, J., Cohen-Salmon, M., Sohl, G., … Willecke, K. (2003). Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Human Molecular Genetics, 12(1), 13-21. https://doi.org/10.1093/hmg/ddg001
Tham, D. K., Joshi, B., & Moukhles, H. (2016). Aquaporin-4 cell-surface expression and turnover are regulated by dystroglycan, dynamin, and the extracellular matrix in astrocytes. PLoS One, 11(10), e0165439. https://doi.org/10.1371/journal.pone.0165439
Thangarajh, M., Masterman, T., Hillert, J., Moerk, S., & Jonsson, R. (2007). A proliferation-inducing ligand (APRIL) is expressed by astrocytes and is increased in multiple sclerosis. Scandinavian Journal of Immunology, 65(1), 92-98. https://doi.org/10.1111/j.1365-3083.2006.01867.x
Toutounchian, J. J., & McCarty, J. H. (2017). Selective expression of eGFP in mouse perivascular astrocytes by modification of the Mlc1 gene using T2A-based ribosome skipping. Genesis, 55(10), e23071. https://doi.org/10.1002/dvg.23071
Tran, C. H. T., Peringod, G., & Gordon, G. R. (2018). Astrocytes integrate behavioral state and vascular signals during functional hyperemia. Neuron, 100(5), 1133-1148 e1133. https://doi.org/10.1016/j.neuron.2018.09.045
Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H., Lee, D. J., … Massague, J. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002-1016. https://doi.org/10.1016/j.cell.2014.01.040
van de Haar, H. J., Jansen, J. F. A., van Osch, M. J. P., van Buchem, M. A., Muller, M., Wong, S. M., … Backes, W. H. (2016). Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiology of Aging, 45, 190-196. https://doi.org/10.1016/j.neurobiolaging.2016.06.006
van der Knaap, M. S., Boor, I., & Estevez, R. (2012). Megalencephalic leukoencephalopathy with subcortical cysts: Chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurology, 11(11), 973-985. https://doi.org/10.1016/S1474-4422(12)70192-8
van Vliet, E. A., Aronica, E., & Gorter, J. A. (2015). Blood-brain barrier dysfunction, seizures and epilepsy. Seminars in Cell & Developmental Biology, 38, 26-34. https://doi.org/10.1016/j.semcdb.2014.10.003
van Vliet, E. A., Aronica, E., Tolner, E. A., Lopes da Silva, F. H., & Gorter, J. A. (2004). Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Experimental Neurology, 187(2), 367-379. https://doi.org/10.1016/j.expneurol.2004.01.016
van Vliet, E. A., da Costa Araújo, S., Redeker, S., van Schaik, R., Aronica, E., & Gorter, J. A. (2007). Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain, 130(2), 521-534. https://doi.org/10.1093/brain/awl318
Vanlandewijck, M., He, L., Mae, M. A., Andrae, J., Ando, K., del Gaudio, F., … Betsholtz, C. (2018). A molecular atlas of cell types and zonation in the brain vasculature. Nature, 554(7693), 475-480. https://doi.org/10.1038/nature25739
Venkatesh, H. S., Morishita, W., Geraghty, A. C., Silverbush, D., Gillespie, S. M., Arzt, M., … Monje, M. (2019). Electrical and synaptic integration of glioma into neural circuits. Nature, 573(7775), 539-545. https://doi.org/10.1038/s41586-019-1563-y
Watkins, S., Robel, S., Kimbrough, I. F., Robert, S. M., Ellis-Davies, G., & Sontheimer, H. (2014). Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nature Communications, 5, 4196. https://doi.org/10.1038/ncomms5196
Wei, F., Zhang, C., Xue, R., Shan, L., Gong, S., Wang, G., … Wang, L. (2017). The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process. Life Sciences, 182, 29-40. https://doi.org/10.1016/j.lfs.2017.05.028
Wetherington, J., Serrano, G., & Dingledine, R. (2008). Astrocytes in the epileptic brain. Neuron, 58(2), 168-178. https://doi.org/10.1016/j.neuron.2008.04.002
Wilcock, D. M., Vitek, M. P., & Colton, C. A. (2009). Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer's disease. Neuroscience, 159(3), 1055-1069. https://doi.org/10.1016/j.neuroscience.2009.01.023
Williams, H. C., Farmer, B. C., Piron, M. A., Walsh, A. E., Bruntz, R. C., Gentry, M. S., … Johnson, L. A. (2020). APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiology of Disease, 136, 104742. https://doi.org/10.1016/j.nbd.2020.104742
Wolburg, H. (1995). Orthogonal arrays of intramembranous particles: A review with special reference to astrocytes. Journal für Hirnforschung, 36(2), 239-258 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7615928
Xu, X., Francis, R., Wei, C. J., Linask, K. L., & Lo, C. W. (2006). Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development, 133(18), 3629-3639. https://doi.org/10.1242/dev.02543
Xue, X., Zhang, W., Zhu, J., Chen, X., Zhou, S., Xu, Z., … Su, C. (2019). Aquaporin-4 deficiency reduces TGF-beta1 in mouse midbrains and exacerbates pathology in experimental Parkinson's disease. Journal of Cellular and Molecular Medicine, 23(4), 2568-2582. https://doi.org/10.1111/jcmm.14147
Yang, J., Lunde, L. K., Nuntagij, P., Oguchi, T., Camassa, L. M., Nilsson, L. N., … Torp, R. (2011). Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer's disease. Journal of Alzheimer's Disease, 27(4), 711-722. https://doi.org/10.3233/JAD-2011-110725
Yao, Y., Chen, Z. L., Norris, E. H., & Strickland, S. (2014). Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nature Communications, 5, 3413. https://doi.org/10.1038/ncomms4413
Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J. M., & Decleves, X. (2007). Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Research, 1134(1), 1-11. https://doi.org/10.1016/j.brainres.2006.11.089
Yu, X., Nagai, J., & Khakh, B. S. (2020). Improved tools to study astrocytes. Nature Reviews. Neuroscience, 21(3), 121-138. https://doi.org/10.1038/s41583-020-0264-8
Yun, S. P., Kam, T. I., Panicker, N., Kim, S., Oh, Y., Park, J. S., … Ko, H. S. (2018). Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nature Medicine, 24(7), 931-938. https://doi.org/10.1038/s41591-018-0051-5
Zhang, W., Couldwell, W. T., Simard, M. F., Song, H., Lin, J. H., & Nedergaard, M. (1999). Direct gap junction communication between malignant glioma cells and astrocytes. Cancer Research, 59(8), 1994-2003 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10213512
Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., … Wu, J. Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929-11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
Zheng, L., Cheng, W., Wang, X., Yang, Z., Zhou, X., & Pan, C. (2017). Overexpression of microRNA-145 ameliorates astrocyte injury by targeting aquaporin 4 in cerebral ischemic stroke. BioMed Research International, 2017, 9530951. https://doi.org/10.1155/2017/9530951
Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K. A., Pozzan, T., & Carmignoto, G. (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neuroscience, 6(1), 43-50. https://doi.org/10.1038/nn980