Fast and Purification-Free Characterization of Bio-Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field-Flow Fractionation Hyphenated with Multi-Angle Light Scattering and Nanoparticle Tracking Analysis Detection.
Animals
Culture Media
/ analysis
Doxorubicin
/ analogs & derivatives
Equipment Design
Exosomes
Fractionation, Field Flow
/ methods
Light
Liposomes
/ analysis
Nanoparticles
/ analysis
Polyethylene Glycols
/ analysis
Polystyrenes
/ chemistry
Proof of Concept Study
Rabbits
Scattering, Radiation
Time Factors
absolute number concentration
cell culture medium
electrical asymmetrical flow field-flow fractionation
exosomes
liposomes
nanoparticle tracking analysis
protein corona
rabbit serum
size separation
zeta potential
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
14 Oct 2020
14 Oct 2020
Historique:
received:
21
09
2020
revised:
08
10
2020
accepted:
12
10
2020
entrez:
17
10
2020
pubmed:
18
10
2020
medline:
1
5
2021
Statut:
epublish
Résumé
Accurate physico-chemical characterization of exosomes and liposomes in biological media is challenging due to the inherent complexity of the sample matrix. An appropriate purification step can significantly reduce matrix interferences, and thus facilitate analysis of such demanding samples. Electrical Asymmetrical Flow Field-Flow Fractionation (EAF4) provides online sample purification while simultaneously enabling access to size and Zeta potential of sample constituents in the size range of approx. 1-1000 nm. Hyphenation of EAF4 with Multi-Angle Light Scattering (MALS) and Nanoparticle Tracking Analysis (NTA) detection adds high resolution size and number concentration information turning this setup into a powerful analytical platform for the comprehensive physico-chemical characterization of such challenging samples. We here present EAF4-MALS hyphenated with NTA for the analysis of liposomes and exosomes in complex, biological media. Coupling of the two systems was realized using a flow splitter to deliver the sample at an appropriate flow speed for the NTA measurement. After a proof-of-concept study using polystyrene nanoparticles, the combined setup was successfully applied to analyze liposomes and exosomes spiked into cell culture medium and rabbit serum, respectively. Obtained results highlight the benefits of the EAF4-MALS-NTA platform to study the behavior of these promising drug delivery vesicles under in vivo like conditions.
Identifiants
pubmed: 33066514
pii: molecules25204703
doi: 10.3390/molecules25204703
pmc: PMC7587377
pii:
doi:
Substances chimiques
Culture Media
0
Liposomes
0
Polystyrenes
0
liposomal doxorubicin
0
Polyethylene Glycols
3WJQ0SDW1A
Doxorubicin
80168379AG
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Horizon 2020 Framework Programme
ID : 720952
Références
J Extracell Vesicles. 2013 Feb 15;2:
pubmed: 24009893
J Control Release. 2020 Apr 10;320:495-510
pubmed: 32004590
Anal Bioanal Chem. 2020 Jan;412(2):425-438
pubmed: 31776639
Biomaterials. 2016 Aug;98:79-91
pubmed: 27179435
Nanomaterials (Basel). 2012 Jan 05;2(1):15-30
pubmed: 28348293
J Nanobiotechnology. 2018 Oct 16;16(1):81
pubmed: 30326899
Nanomedicine. 2011 Dec;7(6):780-8
pubmed: 21601655
Front Cell Dev Biol. 2020 May 25;8:367
pubmed: 32528952
Nanomedicine (Lond). 2018 Mar 1;13(5):539-554
pubmed: 29381129
J Chromatogr A. 2007 Nov 23;1172(2):194-203
pubmed: 17961584
J Chromatogr A. 2019 Nov 22;1606:460383
pubmed: 31345621
Biomolecules. 2020 May 28;10(6):
pubmed: 32481493
J Chromatogr A. 2016 Oct 21;1469:108-119
pubmed: 27697294
J Biomed Res. 2017 Sep 26;31(5):386-394
pubmed: 28290182
Analyst. 2011 Feb 7;136(3):515-9
pubmed: 21109889
Pharm Res. 2010 May;27(5):796-810
pubmed: 20204471
AAPS J. 2018 Mar 8;20(2):41
pubmed: 29520676
Extremophiles. 2017 Nov;21(6):1119-1132
pubmed: 29019077
Analyst. 2014 Mar 7;139(5):914-22
pubmed: 24162133
Anal Chem. 2015 Jun 2;87(11):5482-5
pubmed: 25970520
Science. 1993 Jun 4;260(5113):1456-65
pubmed: 8502990
Anal Chim Acta. 2020 Aug 8;1124:137-145
pubmed: 32534666
Anal Chem. 2020 May 19;92(10):7071-7078
pubmed: 32316720
J Colloid Interface Sci. 2003 May 15;261(2):402-10
pubmed: 16256549
Sci Rep. 2018 Jan 17;8(1):982
pubmed: 29343691
Biochim Biophys Acta. 2014 Jan;1841(1):108-20
pubmed: 24140720
Cell Mol Life Sci. 2018 Jan;75(2):193-208
pubmed: 28733901
Langmuir. 2018 May 22;34(20):5728-5737
pubmed: 29676924
Anal Chem. 2006 Sep 15;78(18):6664-9
pubmed: 16970350
Anal Chem. 2003 Aug 15;75(16):4279-91
pubmed: 14632147
ACS Omega. 2019 Jun 28;4(6):11251-11262
pubmed: 31460227
Lab Chip. 2017 Oct 25;17(21):3558-3577
pubmed: 28832692
Clin Immunol. 2019 Jun;203:134-141
pubmed: 31077803
Anal Bioanal Chem. 2014 Dec;406(30):7855-66
pubmed: 25084738
Anal Bioanal Chem. 2017 Apr;409(10):2501-2518
pubmed: 28116495
Lab Chip. 2018 Dec 18;19(1):87-97
pubmed: 30500003
Photochem Photobiol. 2012 Sep-Oct;88(5):1256-64
pubmed: 22607362
Anal Chem. 2014 Sep 16;86(18):9343-9
pubmed: 25191694
J Control Release. 2019 Apr 10;299:31-43
pubmed: 30797868