Development of an antigen-capture enzyme-linked immunosorbent assay for diagnosis of Aleutian mink disease virus.


Journal

Archives of virology
ISSN: 1432-8798
Titre abrégé: Arch Virol
Pays: Austria
ID NLM: 7506870

Informations de publication

Date de publication:
Jan 2021
Historique:
received: 26 04 2020
accepted: 06 09 2020
pubmed: 18 10 2020
medline: 22 1 2021
entrez: 17 10 2020
Statut: ppublish

Résumé

Aleutian mink disease (AMD), caused by Aleutian mink disease virus (AMDV), is a very important infectious disease of mink. Currently, elimination of antibody- or antigen-positive animals is the most successful strategy for eradicating AMD, but the claw-cutting method of blood sampling is difficult to perform and painful for the animal. In this study, we aimed to establish an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) method for the efficient detection of AMDV antigens using fecal samples. A purified mouse monoclonal antibody (mAb) was used as the capture antibody, and a rabbit polyclonal antibody (pAb) was used as the detection antibody. The assay was optimized by adjusting a series of parameters. Using a cutoff value of 0.205, the limit of detection of the AC-ELISA for strain AMDV-G antigen was 2 μg/mL, and there was no cross-reaction with other mink viruses. The intra- and inter-assay standard deviations were below 0.046, and the correlation of variance (CV) values were 1.24-7.12% when testing fecal samples. Compared with conventional PCR results, the specificity and sensitivity were 91.5% and 90.6%, respectively, and the concordance rate between the two methods was 91.1%.

Identifiants

pubmed: 33068192
doi: 10.1007/s00705-020-04850-w
pii: 10.1007/s00705-020-04850-w
doi:

Substances chimiques

Antibodies, Viral 0
Antigens 0
Capsid Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

83-90

Subventions

Organisme : Young Scientists Fund
ID : 31700140

Références

Jensen TH, Hammer AS, Chriel M (2014) Monitoring chronic infection with a field strain of Aleutian mink disease virus. Vet Microbiol 168(2–4):420–427. https://doi.org/10.1016/j.vetmic.2013.11.041
doi: 10.1016/j.vetmic.2013.11.041 pubmed: 24389253
Canuti M, Whitney HG, Lang AS (2015) Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology. Front Microbiol 6:1119. https://doi.org/10.3389/fmicb.2015.01119
doi: 10.3389/fmicb.2015.01119 pubmed: 26528267 pmcid: 4600916
Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Gatherer D, Davison AJ (2014) The family Parvoviridae. Adv Virol 159(5):1239–1247. https://doi.org/10.1007/s00705-013-1914-1
doi: 10.1007/s00705-013-1914-1
Huang Q, Luo Y, Cheng F, Best SM, Bloom ME, Qiu J (2014) Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology 452–453:23–31. https://doi.org/10.1016/j.virol.2014.01.005
doi: 10.1016/j.virol.2014.01.005 pubmed: 24606679
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W (2016) Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 52(4):463–473. https://doi.org/10.1007/s11262-016-1320-3
doi: 10.1007/s11262-016-1320-3 pubmed: 27007772
Yi L, Cheng Y, Zhang M, Cao Z, Tong M, Cheng S, Yan X (2016) Identification of a novel Aleutian mink disease virus B-cell epitope using a monoclonal antibody against VP2 protein. Virus Res 223:39–42. https://doi.org/10.1016/j.virusres.2016.06.014
doi: 10.1016/j.virusres.2016.06.014 pubmed: 27354304
Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB, McKenna R, Agbandje-McKenna M (2001) Identification of Aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol 75(22):11116–11127. https://doi.org/10.1128/JVI.75.22.11116-11127.2001
doi: 10.1128/JVI.75.22.11116-11127.2001 pubmed: 11602751 pmcid: 114691
Lu T, Wang Y, Ge J, Ma Q, Yan W, Zhang Y, Zhao L, Chen H (2017) Identification and characterization of a novel B-cell epitope on Aleutian mink disease virus capsid protein VP2 using a monoclonal antibody. Virus Res. https://doi.org/10.1016/j.virusres.2017.12.008
doi: 10.1016/j.virusres.2017.12.008 pubmed: 29278728 pmcid: 7114567
Castelruiz Y, Blixenkrone-Moller M, Aasted B (2005) DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine 23(10):1225–1231. https://doi.org/10.1016/j.vaccine.2004.09.003
doi: 10.1016/j.vaccine.2004.09.003 pubmed: 15652664
Aasted B, Alexandersen S, Christensen J (1998) Vaccination with Aleutian mink disease parvovirus (AMDV) capsid proteins enhances disease, while vaccination with the major non-structural AMDV protein causes partial protection from disease. Vaccine 16(11–12):1158–1165
doi: 10.1016/S0264-410X(98)80114-X
Sang Y, Ma J, Hou Z, Zhang Y (2012) Phylogenetic analysis of the VP2 gene of Aleutian mink disease parvoviruses isolated from 2009 to 2011 in China. Virus Genes 45(1):31–37. https://doi.org/10.1007/s11262-012-0734-9
doi: 10.1007/s11262-012-0734-9 pubmed: 22415542
Wang Z, Wu W, Hu B, Zhang H, Bai X, Zhao J, Zhang L, Yan X (2014) Molecular epidemiology of Aleutian mink disease virus in China. Virus Res 184:14–19. https://doi.org/10.1016/j.virusres.2014.02.007
doi: 10.1016/j.virusres.2014.02.007 pubmed: 24561116
Leimann A, Knuuttila A, Maran T, Vapalahti O, Saarma U (2015) Molecular epidemiology of Aleutian mink disease virus (AMDV) in Estonia, and a global phylogeny of AMDV. Virus Res 199:56–61. https://doi.org/10.1016/j.virusres.2015.01.011
doi: 10.1016/j.virusres.2015.01.011 pubmed: 25616049
Hussain I, Price GW, Farid AH (2014) Inactivation of Aleutian mink disease virus through high temperature exposure in vitro and under field-based composting conditions. Vet Microbiol 173(1–2):50–58. https://doi.org/10.1016/j.vetmic.2014.07.014
doi: 10.1016/j.vetmic.2014.07.014 pubmed: 25139658
Broll S, Alexandersen S (1996) Investigation of the pathogenesis of transplacental transmission of Aleutian mink disease parvovirus in experimentally infected mink. J Virol 70(3):1455–1466
doi: 10.1128/JVI.70.3.1455-1466.1996
Chen X, Song C, Liu Y, Qu L, Liu D, Zhang Y, Liu M (2016) Development of an enzyme-linked immunosorbent assay based on fusion VP2332-452 Antigen for detecting antibodies against Aleutian mink disease virus. J Clin Microbiol 54(2):439–442. https://doi.org/10.1128/JCM.02625-15
doi: 10.1128/JCM.02625-15 pubmed: 26582828 pmcid: 4733201
Aasted B, Cohn A (1982) Inhibition of precipitation in counter current electrophoresis. A sensitive method for detection of mink antibodies to Aleutian disease virus. Acta Pathol Microbiol Immunol Scand Sect C Immunol 90(1):15–19
Knuuttila A, Aronen P, Saarinen A, Vapalahti O (2009) Development and evaluation of an enzyme-linked immunosorbent assay based on recombinant VP2 capsids for the detection of antibodies to Aleutian mink disease virus. Clin Vaccine Immunol CVI 16(9):1360–1365. https://doi.org/10.1128/CVI.00148-09
doi: 10.1128/CVI.00148-09 pubmed: 19641102
Andersson AM, Wallgren P (2013) Evaluation of two enzyme-linked immunosorbent assays for serodiagnosis of Aleutian mink disease virus infection in mink. Acta Vet Scand 55:86. https://doi.org/10.1186/1751-0147-55-86
doi: 10.1186/1751-0147-55-86 pubmed: 24274663 pmcid: 4177130
Ma F, Zhang L, Wang Y, Lu R, Hu B, Lv S, Xue X, Li X, Ling M, Fan S, Zhang H, Yan X (2016) Development of a peptide ELISA for the diagnosis of Aleutian mink disease. PLoS ONE 11(11):e0165793. https://doi.org/10.1371/journal.pone.0165793
doi: 10.1371/journal.pone.0165793 pubmed: 27802320 pmcid: 5089682
Gong QL, Li D, Diao NC, Liu Y, Li BY, Tian T, Ge GY, Zhao B, Song YH, Li DL, Leng X, Du R (2020) Mink Aleutian disease seroprevalence in China during 1981–2017: A systematic review and meta-analysis. Microb Pathog 139:103908. https://doi.org/10.1016/j.micpath.2019.103908
doi: 10.1016/j.micpath.2019.103908 pubmed: 31830583
Ho CF, Huang SW, Chan KW, Wu JS, Chang SP, Wang CY (2017) Development of an antigen-capture ELISA for beak and feather disease virus. Adv Virol. https://doi.org/10.1007/s00705-017-3596-6
doi: 10.1007/s00705-017-3596-6
Yun B, Li D, Zhu H, Liu W, Qin L, Liu Z, Wu G, Wang Y, Qi X, Gao H, Wang X, Gao Y (2013) Development of an antigen-capture ELISA for the detection of avian leukosis virus p27 antigen. J Virol Methods 187(2):278–283. https://doi.org/10.1016/j.jviromet.2012.11.027
doi: 10.1016/j.jviromet.2012.11.027 pubmed: 23201286
Stern D, Pauly D, Zydek M, Miller L, Piesker J, Laue M, Lisdat F, Dorner MB, Dorner BG, Nitsche A (2016) Development of a genus-specific antigen capture ELISA for orthopoxviruses—target selection and optimized screening. PLoS ONE 11(3):e0150110. https://doi.org/10.1371/journal.pone.0150110
doi: 10.1371/journal.pone.0150110 pubmed: 26930499 pmcid: 4773239
Jahns H, Daly P, McElroy MC, Sammin DJ, Bassett HF, Callanan JJ (2010) Neuropathologic features of Aleutian disease in farmed mink in Ireland and molecular characterization of Aleutian mink disease virus detected in brain tissues. J Vet Diagn Investig 22(1):101–105. https://doi.org/10.1177/104063871002200120
doi: 10.1177/104063871002200120
Oie KL, Durrant G, Wolfinbarger JB, Martin D, Costello F, Perryman S, Hogan D, Hadlow WJ, Bloom ME (1996) The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J Virol 70(2):852–861
doi: 10.1128/JVI.70.2.852-861.1996
Jensen TH, Christensen LS, Chriel M, Uttenthal A, Hammer AS (2011) Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 171(1):81–85. https://doi.org/10.1016/j.jviromet.2010.10.004
doi: 10.1016/j.jviromet.2010.10.004 pubmed: 20951744
Persson S, Jensen TH, Blomstrom AL, Appelberg MT, Magnusson U (2015) Aleutian mink disease virus in free-ranging mink from Sweden. PLoS ONE 10(3):e0122194. https://doi.org/10.1371/journal.pone.0122194
doi: 10.1371/journal.pone.0122194 pubmed: 25822750 pmcid: 4379071

Auteurs

Taofeng Lu (T)

Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.

Yuanzhi Wang (Y)

State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.

Yanjun Wu (Y)

Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.

Lili Zhao (L)

State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.

Shuguang Wu (S)

Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.

Hongyan Chen (H)

State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China. sydw2014@163.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH