Impact of predictive, preventive and precision medicine strategies in epilepsy.
Journal
Nature reviews. Neurology
ISSN: 1759-4766
Titre abrégé: Nat Rev Neurol
Pays: England
ID NLM: 101500072
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
accepted:
01
09
2020
pubmed:
21
10
2020
medline:
14
1
2022
entrez:
20
10
2020
Statut:
ppublish
Résumé
Over the last decade, advances in genetics, neuroimaging and EEG have enabled the aetiology of epilepsy to be identified earlier in the disease course than ever before. At the same time, progress in the study of experimental models of epilepsy has provided a better understanding of the mechanisms underlying the condition and has enabled the identification of therapies that target specific aetiologies. We are now witnessing the impact of these advances in our daily clinical practice. Thus, now is the time for a paradigm shift in epilepsy treatment from a reactive attitude, treating patients after the onset of epilepsy and the initiation of seizures, to a proactive attitude that is more broadly integrated into a 'P4 medicine' approach. This P4 approach, which is personalized, predictive, preventive and participatory, puts patients at the centre of their own care and, ultimately, aims to prevent the onset of epilepsy. This aim will be achieved by adapting epilepsy treatments not only to a given syndrome but also to a given patient and moving from the usual anti-seizure treatments to personalized treatments designed to target specific aetiologies. In this Review, we present the current state of this ongoing revolution, emphasizing the impact on clinical practice.
Identifiants
pubmed: 33077944
doi: 10.1038/s41582-020-0409-4
pii: 10.1038/s41582-020-0409-4
doi:
Substances chimiques
Anticonvulsants
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
674-688Références
Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472 (2005).
World Health Organization. Epilepsy: a public health imperative (WHO, 2019). This report provides an overview of the challenges of epilepsy diagnosis and treatment throughout the world, highlighting the gaps between high-income and low-income countries.
Perucca, E. Antiepileptic drugs: evolution of our knowledge and changes in drug trials. Epileptic Disord. 21, 319–329 (2019).
pubmed: 31403463
Sander, J. W. Some aspects of prognosis in the epilepsies: a review. Epilepsia 34, 1007–1016 (1993).
pubmed: 8243349
Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).
pubmed: 10660394
Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M. & Villanueva, V. The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59, 2179–2193 (2018).
pubmed: 30426482
Chen, Z., Brodie, M. J., Liew, D. & Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs a 30-year longitudinal cohort study. JAMA Neurol. 75, 279–286 (2018).
pubmed: 29279892
Devinsky, O. et al. Epilepsy. Nat. Rev. Dis. Primers 4, 445–517 (2018). This review provides a general overview of the current state of knowledge in epilepsy definitions, classification, pathophysiology, management and therapies.
Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017). This position paper from the International League Against Epilepsy describes changes to the classification of epilepsy, which were implemented in 2017, and defines major concepts such as epileptic syndrome, epileptic and developmental encephalopathy, and genetic generalized epilepsies.
pubmed: 28276062
pmcid: 5386840
International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures: from the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 22, 489–501 (1981).
Zuberi, S. M. & Brunklaus, A. Epilepsy in 2017: precision medicine drives epilepsy classification and therapy. Nat. Rev. Neurol. 14, 67–68 (2018).
pubmed: 29348546
US Food and Drug Administration–National Institutes of Health Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Ressource (FDA–NIH, 2016). This paper gives an overview of the different types of biomarkers available.
Engel, J. et al. Epilepsy biomarkers. Epilepsia 54, 61–69 (2013).
pubmed: 23909854
pmcid: 4131763
Koutroumanidis, M. et al. The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE neurophysiology task force (Part 1). Epileptic Disord. 19, 233–298 (2017).
pubmed: 28984246
Kessler, S. K. & McGinnis, E. A practical guide to treatment of childhood absence epilepsy. Pediatr. Drugs 21, 15–24 (2019).
Tassinari, C. A. et al. Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia. Clin. Neurophysiol. 111, S94–S102 (2000).
pubmed: 10996561
International League Against Epilepsy. Childhood absence epilepsy. ILAE https://www.epilepsydiagnosis.org/syndrome/cae-genetics.html (2020).
Nariai, H. et al. Scalp EEG Ictal gamma and beta activity during infantile spasms: Evidence of focality. Epilepsia 58, 882–892 (2017).
pubmed: 28397999
pmcid: 5429878
Iwatani, Y. et al. Ictal high-frequency oscillations on scalp EEG recordings in symptomatic West syndrome. Epilepsy Res. 102, 60–70 (2012).
pubmed: 22647843
Irahara, K. et al. High gamma activity of 60-70Hz in the area surrounding a cortical tuber in an infant with tuberous sclerosis. Ital. J. Pediatr. 38, 15 (2012).
pubmed: 22553953
pmcid: 3416714
Yu, H. J., Lee, C. G., Nam, S. H., Lee, J. & Lee, M. Clinical and ictal characteristics of infantile seizures: EEG correlation via long-term video EEG monitoring. Brain Dev. 35, 771–777 (2013).
pubmed: 23522623
Graus, F. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404 (2016). This review provides an overview of autoimmune epilepsy from a clinical, pathophysiological and biological point of view, in particular the contribution of autoantibodies to therapeutic decisions and prognosis.
pubmed: 26906964
pmcid: 5066574
Giordano, A. et al. Diagnosing autoimmune encephalitis in a real-world single-centre setting. J. Neurol. 267, 449–460 (2020).
pubmed: 31667626
Esposito, S., Principi, N., Calabresi, P. & Rigante, D. An evolving redefinition of autoimmune encephalitis. Autoimmun. Rev. 18, 155–163 (2019).
pubmed: 30572142
Broadley, J. et al. Prognosticating autoimmune encephalitis: a systematic review. J. Autoimmun. 96, 24–34 (2019).
pubmed: 30595145
Meinck, H. M. et al. Antibodies against glutamic acid decarboxylase: Prevalence in neurological diseases. J. Neurol. Neurosurg. Psychiatry 71, 100–103 (2001).
pubmed: 11413272
pmcid: 1737476
Graus, F. et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur. J. Neurol. 25, 1011–1016 (2018).
pubmed: 29667271
pmcid: 6037545
Yuzyuk, T. et al. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Mol. Genet. Metab. 118, 167–172 (2016).
pubmed: 27324284
Wilson, M. P., Plecko, B., Mills, P. B. & Clayton, P. T. Disorders affecting vitamin B6 metabolism. J. Inherit. Metab. Dis. 42, 629–646 (2019).
pubmed: 30671974
van Karnebeek, C. D. M. et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr. Neurol. 59, 6–12 (2016).
pubmed: 26995068
Osman, C., Foulds, N., Hunt, D., Edwards, C. J. & Prevett, M. Diagnosis of pyridoxine-dependent epilepsy in an adult presenting with recurrent status epilepticus. Epilepsia 61, e1–e6 (2020).
pubmed: 31849043
van Karnebeek, C. D. M. et al. Metabolic evaluation of epilepsy: a diagnostic algorithm with focus on treatable conditions. Front. Neurol. 9, 1016 (2018).
pubmed: 30559706
pmcid: 6286965
Nair, S. S., Harikrishnan, S., Sarma, P. S. & Thomas, S. V. Metabolic syndrome in young adults with epilepsy. Seizure 37, 61–64 (2016).
pubmed: 27002245
Speed, D. et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain 137, 2680–2689 (2014).
pubmed: 25063994
pmcid: 4163034
The International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 9, 5269 (2018).
Hattori, J. et al. A screening test for the prediction of Dravet syndrome before one year of age. Epilepsia 49, 626–633 (2008).
pubmed: 18076640
Chemaly, N. et al. Early and long-term electroclinical features of patients with epilepsy and PCDH19 mutation. Epileptic Disord. 20, 457–467 (2018).
pubmed: 30530412
Trivisano, M. et al. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: a multicenter study. Epilepsia 59, 2260–2271 (2018).
pubmed: 30451291
Bahi-Buisson, N. et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia 49, 1027–1037 (2008).
pubmed: 18266744
von Stülpnagel, C. et al. Chewing induced reflex seizures (“eating epilepsy”) and eye closure sensitivity as a common feature in pediatric patients with SYNGAP1 mutations: review of literature and report of 8 cases. Seizure 65, 131–137 (2019).
Aaberg, K. M. et al. Seizures, syndromes, and etiologies in childhood epilepsy: the International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population-based cohort. Epilepsia 58, 1880–1891 (2017). This article classified a cohort of patients using the International League Against Epilepsy classification of epilsepsy and illustrated the number of patients that can be classified by aetiology and those with unknown aetiology.
pubmed: 28949013
Sánchez Fernández, I., Loddenkemper, T., Gaínza-Lein, M., Rosen Sheidley, B. & Poduri, A. Diagnostic yield of genetic tests in epilepsy: a meta-analysis and cost-effectiveness study. Neurology 92, E418–E428 (2019).
pmcid: 6369901
Myers, K. A., Johnstone, D. L. & Dyment, D. A. Epilepsy genetics: current knowledge, applications, and future directions. Clin. Genet. 95, 95–111 (2019).
pubmed: 29992546
Schwarze, K., Buchanan, J., Taylor, J. C. & Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 20, 1122–1130 (2018).
pubmed: 29446766
Costain, G., Cordeiro, D., Matviychuk, D. & Mercimek-Andrews, S. Clinical application of targeted next-generation sequencing panels and whole exome sequencing in childhood epilepsy. Neuroscience 418, 291–310 (2019).
pubmed: 31487502
Stark, Z. et al. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet. Med. 19, 867–874 (2017).
pubmed: 28125081
National Human Genome Research Institute. The cost of sequencing a human genome. NIH https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost (2016).
Oates, S. et al. Incorporating epilepsy genetics into clinical practice: a 360° evaluation. NPJ Genomic Med. 3, 13 (2018).
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Ye, Z. et al. Somatic mutation: the hidden genetics of brain malformations and focal epilepsies. Epilepsy Res. 155, 106161 (2019).
pubmed: 31295639
Klein, K. M. et al. A distinctive seizure type in patients with Cdkl5 mutations: hypermotor-tonic-spasms sequence. Neurology 76, 1436–1438 (2011).
pubmed: 21502606
Lim, C. X., Ricos, M. G., Dibbens, L. M. & Heron, S. E. KCNT1 mutations in seizure disorders: The phenotypic spectrum and functional effects. J. Med. Genet. 53, 217–225 (2016).
pubmed: 26740507
Burgess, R. et al. The genetic landscape of epilepsy of infancy with migrating focal seizures. Ann. Neurol. 86, 821–831 (2019).
pubmed: 31618474
Pitkänen, A., Ekolle Ndode-Ekane, X., Lapinlampi, N. & Puhakka, N. Epilepsy biomarkers – toward etiology and pathology specificity. Neurobiol. Dis. 123, 42–58 (2019).
pubmed: 29782966
Pitkänen, A. et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 15, 843–856 (2016). This review provides an overview of the different types of diagnostic biomarkers under development.
pubmed: 27302363
van Vliet, E. A. et al. WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia 58, 315–330 (2017).
pubmed: 27883181
Jozwiak, S. et al. WONOEP appraisal: development of epilepsy biomarkers — What we can learn from our patients? Epilepsia 58, 951–961 (2017).
pubmed: 28387933
pmcid: 5806696
Kobylarek, D. et al. Advances in the potential biomarkers of epilepsy. Front. Neurol. 10, 685 (2019).
pubmed: 31312171
pmcid: 6614180
West, S. et al. Surgery for epilepsy. Cochrane Database Syst. Rev. 6, CD010541 (2019).
pubmed: 31237346
Frauscher, B. et al. High-frequency oscillations: the state of clinical research. Epilepsia 58, 1316–1329 (2017).
pubmed: 28666056
pmcid: 5806699
Thomschewski, A., Hincapié, A. S. & Frauscher, B. Localization of the epileptogenic zone using high frequency oscillations. Front. Neurol. 10, 94 (2019).
pubmed: 30804887
pmcid: 6378911
Haegelen, C. et al. High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia 54, 848–857 (2013).
pubmed: 23294353
pmcid: 3712982
Akiyama, T. et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia 52, 1802–1811 (2011).
pubmed: 21801168
Van Klink, N. E. C. et al. High frequency oscillations in intra-operative electrocorticography before and after epilepsy surgery. Clin. Neurophysiol. 125, 2212–2219 (2014).
pubmed: 24704141
Jacobs, J. et al. Removing high-frequency oscillations: a prospective multicenter study on seizure outcome. Neurology 91, e1040–e1052 (2018).
pubmed: 30120133
pmcid: 6140372
Roehri, N. et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann. Neurol. 83, 84–97 (2018).
pubmed: 29244226
Mouthaan, B. E. et al. Single pulse electrical stimulation to identify epileptogenic cortex: clinical information obtained from early evoked responses. Clin. Neurophysiol. 127, 1088–1098 (2016).
pubmed: 26377063
Fedele, T. et al. Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci. Rep. 7, 13836 (2017).
pubmed: 29062105
pmcid: 5653833
Kuchenbuch, M. et al. Quantitative analysis and EEG markers of KCNT1 epilepsy of infancy with migrating focal seizures. Epilepsia 60, 20–32 (2019).
pubmed: 30525185
Martin, H. C. et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet. 23, 3200–3211 (2014).
pubmed: 24463883
pmcid: 4030775
Perenthaler, E., Yousefi, S., Niggl, E. & Barakat, T. S. Beyond the exome: the non-coding genome and enhancers in neurodevelopmental disorders and malformations of cortical development. Front. Cell. Neurosci. 13, 352 (2019).
pubmed: 31417368
pmcid: 6685065
Lu, S. et al. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res. 47, 8111–8125 (2019).
pubmed: 31340039
pmcid: 6735797
Sim, N. S. et al. Precise detection of low-level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 138, 901–912 (2019).
pubmed: 31377847
Dubey, D., Pittock, S. J. & McKeon, A. Antibody prevalence in epilepsy and encephalopathy score: increased specificity and applicability. Epilepsia 60, 367–369 (2019).
pubmed: 30727035
Dubey, D. et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 58, 1181–1189 (2017).
pubmed: 28555833
Husari, K. S. & Dubey, D. Autoimmune epilepsy. Neurotherapeutics 16, 685–702 (2019). This article proposes the use of composite diagnostic biomarkers that incorporate clinical, imaging and molecular (CSF) biomarkers.
pubmed: 31240596
pmcid: 6694338
President’s Council of Advisors on Science and Technology. Priorities for personalized medicine (PCAST, 2008).
Nimmesgern, E., Benediktsson, I. & Norstedt, I. Personalized medicine in Europe. Clin. Transl. Sci. 10, 61–63 (2017).
pubmed: 28083940
pmcid: 5355974
Denny, J. C. et al. The ‘All of Us’ research program. N. Engl. J. Med. 381, 668–676 (2019).
pubmed: 31412182
Hulsen, T. et al. From big data to precision medicine. Front. Med. 6, 34 (2019).
Kearney, H., Byrne, S., Cavalleri, G. L. & Delanty, N. Tackling epilepsy with high-definition precision medicine: a review. JAMA Neurol. 76, 1109–1116 (2019). This article describes the concept of precision medicine and its application to the field of epilepsy.
Striano, P. & Minassian, B. A. From genetic testing to precision medicine in epilepsy. Neurotherapeutics 17, 609–615 (2020).
pubmed: 31981099
Brown, R. J. & Reuber, M. Psychological and psychiatric aspects of psychogenic non-epileptic seizures (PNES): a systematic review. Clin. Psychol. Rev. 45, 157–182 (2016).
pubmed: 27084446
Kanemoto, K. et al. PNES around the world: where we are now and how we can close the diagnosis and treatment gaps — an ILAE PNES task force report. Epilepsia Open 2, 307–316 (2017).
pubmed: 29588959
pmcid: 5862115
Aaberg, K. M. et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics 139, e20163908 (2017).
pubmed: 28557750
Kotagal, P., Costa, M., Wyllie, E. & Wolgamuth, B. Paroxysmal nonepileptic events in children and adolescents. Pediatrics 110, e46 (2002).
pubmed: 12359819
Boesebeck, F., Freermann, S., Kellinghaus, C. & Evers, S. Misdiagnosis of epileptic and non-epileptic seizures in a neurological intensive care unit. Acta Neurol. Scand. 122, 189–195 (2010).
pubmed: 20003086
Chaves, J. & Sander, J. W. Seizure aggravation in idiopathic generalized epilepsies. Epilepsia 46, 133–139 (2005).
pubmed: 16302887
Parker, A. P., Agathonikou, A., Robinson, R. O. & Panayiotopoulos, C. P. Inappropriate use of carbamazepine and vigabatrin in typical absence seizures. Dev. Med. Child Neurol. 40, 517–519 (2008).
Pawluski, J. L. et al. Long-term negative impact of an inappropriate first antiepileptic medication on the efficacy of a second antiepileptic medication in mice. Epilepsia 59, e109–e113 (2018). This article highlights the negative impact on the long-term outcome of receiving an inappropriate first anti-epileptic medication, even if this medication is administered on a temporary basis.
pubmed: 29901235
Guerrini, R. et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39, 508–512 (1998).
pubmed: 9596203
de Lange, I. M. et al. Influence of contraindicated medication use on cognitive outcome in Dravet syndrome and age at first afebrile seizure as a clinical predictor in SCN1A-related seizure phenotypes. Epilepsia 59, 1154–1165 (2018).
pubmed: 29750338
Hauser, W. A., Annegers, J. F. & Kurland, L. T. Prevalence of epilepsy in Rochester, Minnesota: 1940–1980. Epilepsia 32, 429–445 (1991).
pubmed: 1868801
Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).
Mohanraj, R. & Brodie, M. J. Early predictors of outcome in newly diagnosed epilepsy. Seizure 22, 333–344 (2013).
pubmed: 23583115
Shinnar, S. et al. Predictors of multiple seizures in a cohort of children prospectively followed from the time of their first unprovoked seizure. Ann. Neurol. 48, 140–147 (2000).
pubmed: 10939563
Kim, L. G., Johnson, T. L., Marson, A. G. & Chadwick, D. W. Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial. Lancet Neurol. 5, 317–322 (2006).
pubmed: 16545748
Hauser, W. A., Rich, S. S., Lee, J. R. J., Annegers, J. F. & Anderson, V. E. Risk of recurrent seizures after two unprovoked seizures. N. Engl. J. Med. 338, 429–434 (1998).
pubmed: 9459646
O’Callaghan, F. J. K. et al. The effect of lead time to treatment and of age of onset on developmental outcome at 4 years in infantile spasms: evidence from the United Kingdom Infantile Spasms Study. Epilepsia 52, 1359–1364 (2011). This article shows the impact of a delay in the adequate management of infantile spasms on long-term outcome.
pubmed: 21668442
Auvin, S. et al. Diagnosis delay in West syndrome: misdiagnosis and consequences. Eur. J. Pediatr. 171, 1695–1701 (2012).
pubmed: 22892960
Eisermann, M. M. et al. Infantile spasms in down syndrome — effects of delayed anticonvulsive treatment. Epilepsy Res. 55, 21–27 (2003).
pubmed: 12948613
Bok, L. A. et al. Long-term outcome in pyridoxine-dependent epilepsy. Dev. Med. Child Neurol. 54, 849–854 (2012).
pubmed: 22804844
Al Teneiji, A. et al. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy. Metab. Brain Dis. 32, 443–451 (2017).
pubmed: 27882480
Malmgren, K. & Edelvik, A. Long-term outcomes of surgical treatment for epilepsy in adults with regard to seizures, antiepileptic drug treatment and employment. Seizure 44, 217–224 (2017).
pubmed: 27839670
Skirrow, C. et al. Determinants of IQ outcome after focal epilepsy surgery in childhood: a longitudinal case-control neuroimaging study. Epilepsia 60, 872–884 (2019).
pubmed: 30968956
Delalande, O. et al. Vertical parasagittal hemispherotomy: surgical procedures and clinical long-term outcomes in a population of 83 children. Neurosurgery 60, 19–32 (2007).
Hussain, S. A. et al. Recognition of infantile spasms is often delayed: the ASSIST study. J. Pediatr. 190, 215–221.e1 (2017).
pubmed: 29144248
O’Callaghan, F. J. K. et al. Vigabatrin with hormonal treatment versus hormonal treatment alone (ICISS) for infantile spasms: 18-month outcomes of an open-label, randomised controlled trial. Lancet Child Adolesc. Health 2, 715–725 (2018).
pubmed: 30236380
Hancock, E. C., Osborne, J. P. & Edwards, S. W. Treatment of infantile spasms. Cochrane Database Syst. Rev. 6, CD001770 (2013).
Abel, T. J., Losito, E., Ibrahim, G. M., Asano, E. & Rutka, J. T. Multimodal localization and surgery for epileptic spasms of focal origin: a review. Neurosurg. Focus. 45, E4 (2018).
pubmed: 30173609
Yum, M. S. et al. Surgical treatment for localization-related infantile spasms: Excellent long-term outcomes. Clin. Neurol. Neurosurg. 113, 213–217 (2011).
pubmed: 21146918
Iwatani, Y. et al. Long-term developmental outcome in patients with West syndrome after epilepsy surgery. Brain Dev. 34, 731–738 (2012).
pubmed: 22336751
Chipaux, M. et al. Refractory spasms of focal onset — a potentially curable disease that should lead to rapid surgical evaluation. Seizure 51, 163–170 (2017).
pubmed: 28873364
Schulz, A. et al. Study of intraventricular cerliponase alfa for CLN2 disease. N. Engl. J. Med. 378, 1898–1907 (2018). This article highlights the efficacy of substitutive therapies; in particular, we recommend the figures that illustrate the slowing of disease progression in patients treated with cerliponase alfa compared with historical case series.
pubmed: 29688815
Schulz, A. et al. Persistent treatment effect of cerliponase alfa in children with CLN2 disease: a 3 year update from an ongoing multicenter extension study. Mol. Genet. Metab. 126, S133 (2019).
Papetti, L. et al. Metabolic epilepsy: an update. Brain Dev. 35, 827–841 (2013).
pubmed: 23273990
Wolf, N. I., García-Cazorla, A. & Hoffmann, G. F. Epilepsy and inborn errors of metabolism in children. J. Inherit. Metab. Dis. 32, 609 (2009).
pubmed: 19642011
French, J. A. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163 (2016).
pubmed: 27613521
Gastaldi, M., Thouin, A. & Vincent, A. Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics 13, 147–162 (2016).
pubmed: 26692392
Strehlow, V. et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142, 80–92 (2019).
pubmed: 30544257
Ben-Shalom, R. et al. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232 (2017). This article shows that different mutations in the same gene can have the opposite functional effect and that a treatment contraindicated in one case might be a targeted treatment in the other.
pubmed: 28256214
pmcid: 5796785
Sanders, S. J. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).
pubmed: 29691040
pmcid: 6015533
Lauxmann, S. et al. Relationship of electrophysiological dysfunction and clinical severity in SCN2A-related epilepsies. Hum. Mutat. 39, 1942–1956 (2018).
pubmed: 30144217
Kang, S. K. et al. Spectrum of KV2.1 dysfunction in KCNB1-associated neurodevelopmental disorders. Ann. Neurol. 86, 899–912 (2019).
pubmed: 31600826
Zutshi, D. et al. Racial variations in lacosamide serum concentrations in adult patients with epilepsy. J. Neurol. Sci. 412, 116742 (2020).
pubmed: 32126366
Orsini, A. et al. Personalized medicine in epilepsy patients. J. Transl. Genet. Genom. 2, 16 (2018).
McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).
pubmed: 21428769
pmcid: 3113609
Man, C. B. L. et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48, 1015–1018 (2007).
pubmed: 17509004
Silvado, C. E., Terra, V. C. & Twardowschy, C. A. CYP2C9 polymorphisms in epilepsy: Influence on phenytoin treatment. Pharmacogenomics Pers. Med. 11, 51–58 (2018).
US Food and Drug Administration. Human gene therapy for rare diseases, guidance for industry (FDA, 2020).
FDA (Food and Drug Administration). Application of current statutory authorities to human somatic cell therapy products and gene therapy products. Fed. Regist. 58, 53248–53251 (1993).
Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).
pubmed: 29575374
Wang, F. et al. Clinical translation of gene medicine. J. Gene Med. 21, 1–8 (2019).
Gene Therapy Clinical Trials Worldwide. Abedia.com http://www.abedia.com/wiley/index.html (2019).
Gene Therapy Clinical Trials Worldwide. Hippocampal NPY gene transfer in subjects with Intractable Temporal Lobe Epilepsy. Abedia.com http://www.abedia.com/wiley/record_detail.php?ID=1758 (2004).
Wickham, J. et al. Inhibition of epileptiform activity by neuropeptide Y in brain tissue from drug-resistant temporal lobe epilepsy patients. Sci. Rep. 9, 19393 (2019).
pubmed: 31852985
pmcid: 6920462
Noe’, F. et al. Gene therapy in epilepsy: the focus on NPY. Peptides 28, 377–383 (2007).
pubmed: 17196301
Nikitidou Ledri, L. et al. Translational approach for gene therapy in epilepsy: Model system and unilateral overexpression of neuropeptide Y and Y2 receptors. Neurobiol. Dis. 86, 52–61 (2016).
Noè, F. et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131, 1506–1515 (2008).
pubmed: 18477594
Sztainberg, Y. et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature 528, 123–126 (2015). This article provides a proof-of-concept evidence that gene therapy can be effective in a mouse model of Rett syndrome, showing the impact of this strategy on epilepsy but also on the whole developmental phenotype linked to the pathogenic variant.
pubmed: 26605526
pmcid: 4839300
Lenk, G. M. et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann. Neurol. 87, 339–346 (2020).
pubmed: 31943325
pmcid: 7064908
Burbano Portilla, L. E. Antisense Oligonucleotide Precision Therapy in KCNT1 — Severe Epilepsy. Thesis, Univ. Melbourne (2019).
Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine 9, 257–277 (2016).
pubmed: 27333023
pmcid: 4972487
Isom, L. L. et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A prevents SUDEP in a mouse model of Dravet syndrome [abstract 1.116]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421112 (2019).
Isom, L. L. et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A prevents seizures and SUDEP in a mouse model of Dravet syndrome [abstract 1.051]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/500169 (2018).
Liau, et al. TANGO oligonucleotides for the treatment of Dravet syndrome: safety, biodistribution, and pharmacology in the non-human primate [abstract 2.195]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421641 (2019).
Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).
pubmed: 31597037
pmcid: 6961983
Amariles, P. & Madrigal-Cadavid, J. Ethical, economic, societal, clinical, and pharmacology uncertainties associated with Milasen and other personalized drugs. Ann. Pharmacother. 54, 937–938 (2020).
pubmed: 32126811
Young, A. N. et al. A GABA-selective AAV vector upregulates endogenous Scn1a expression and reverses multiple phenotypes in a mouse model of Dravet syndrome [abstract 3.1]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421999 (2019).
Miller, I. et al. From gene replacement to gene regulation: developing a disease-modifying AAV gene therapy vector for SCN1A–positive (SCN1A+) pediatric epilepsy [abstract 1.091]. Am. Epilepsy Soc. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/2421087 (2019).
Colasante, G. et al. dCas9-based scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol. Ther. 28, 235–253 (2019). This article was the first to use a technique derived from CRISPR–Cas9 gene editing as therapy in a mouse model of monogenic epilepsy; we believe this is a promising approach.
pubmed: 31607539
Hood, L., Balling, R. & Auffray, C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol. J. 7, 992–1001 (2012).
pubmed: 22815171
pmcid: 3962497
Flores, M., Glusman, G., Brogaard, K., Price, N. D. & Hood, L. P4 medicine: how systems medicine will transform the healthcare sector and society. Personalized Med. 10, 565–576 (2013). This article discusses the concept of personalized, preventive, predictive and participatory, or ‘P4’, medicine.
Pitkänen, A. & Engel, J. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11, 231–241 (2014).
pubmed: 24492975
pmcid: 3996117
Rakhade, S. N. & Jensen, F. E. Epileptogenesis in the immature brain: emerging mechanisms. Nat. Rev. Neurol. 5, 380–391 (2009).
pubmed: 19578345
pmcid: 2822660
Łukawski, K. et al. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol. Rep. 70, 284–293 (2018).
pubmed: 29477036
Löscher, W. The holy grail of epilepsy prevention: preclinical approaches to antiepileptogenic treatments. Neuropharmacology 167, 107605 (2020). This article provides an overview of the different anti-epileptogenic treatment strategies being developed in animal models and the difficulties of translating the findings into humans.
pubmed: 30980836
Clossen, B. L. & Reddy, D. S. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim. Biophys. Acta 1863, 1519–1538 (2017).
pmcid: 5474195
Józ´wiak, S. & Kotulska, K. Prevention of epileptogenesis - a new goal for epilepsy therapy. Pediatr. Neurol. 51, 758–759 (2014).
pubmed: 25283750
Bar-Klein, G. et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 140, 1692–1705 (2017).
pubmed: 28444141
Broekaart, D. W. M. et al. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway. Epilepsia 58, 1462–1472 (2017).
pubmed: 28643873
Klein, P. & Tyrlikova, I. No prevention or cure of epilepsy as yet. Neuropharmacology 168, 107762 (2020).
pubmed: 31499048
Colebunders, R. et al. From river blindness to river epilepsy: implications for onchocerciasis elimination programmes. PLoS Negl. Trop. Dis. 13, e0007407 (2019).
pubmed: 31318857
pmcid: 6638735
Fodjo, J. N. S., Makoy, Y. L. & Colebunders, R. Epilepsy prevention. Lancet 394, 2072 (2019).
pubmed: 31818410
Siewe, J. N. F. et al. Low prevalence of epilepsy and onchocerciasis after more than 20 years of ivermectin treatment in the Imo River Basin in Nigeria. Infect. Dis. Poverty 8, 8 (2019).
pubmed: 30670093
pmcid: 6343278
Specchio, N. et al. Pediatric status epilepticus: identification of prognostic factors using the new ILAE classification after 5 years of follow-up. Epilepsia 60, 2486–2498 (2019).
pubmed: 31721184
Fatuzzo, D., Novy, J. & Rossetti, A. O. Use of newer antiepileptic drugs and prognosis in adults with status epilepticus: comparison between 2009 and 2017. Epilepsia 59, e98–e102 (2018).
pubmed: 29851060
Neligan, A. & Shorvon, S. D. Prognostic factors, morbidity and mortality in tonic-clonic status epilepticus: a review. Epilepsy Res. 93, 1–10 (2011).
pubmed: 20947300
Tremont-Lukats, I., Ratilal, B. O., Armstrong, T. & Gilbert, M. R. Antiepileptic drugs for preventing seizures in people with brain tumors. Cochrane Database Syst. Rev. 2, CD004424 (2008).
Thompson, K., Pohlmann-Eden, B., Campbell, L. A. & Abel, H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst. Rev. 8, CD009900 (2015).
Greenhalgh, J., Weston, J., Dundar, Y., Nevitt, S. J. & Marson, A. G. Antiepileptic drugs as prophylaxis for postcraniotomy seizures. Cochrane Database Syst. Rev. 5, CD007286 (2018).
pubmed: 29791030
Sloviter, R. S. Epileptogenesis meets Occam’s Razor. Curr. Opin. Pharmacol. 35, 105–110 (2017).
pubmed: 28781107
Kossoff, E. H., Ferenc, L. & Comi, A. M. An infantile-onset, severe, yet sporadic seizure pattern is common in Sturge-Weber syndrome. Epilepsia 50, 2154–2157 (2009).
pubmed: 19389148
Bombardieri, R., Pinci, M., Moavero, R., Cerminara, C. & Curatolo, P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 14, 146–149 (2010).
pubmed: 19369101
Shirley, M. D. et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).
pubmed: 23656586
pmcid: 3749068
Kuchenbuch, M. & Nabbout, R. Sturge–Weber syndrome. J. Pediatr. Epilepsy 05, 082–088 (2016).
Sujansky, E. & Conradi, S. Outcome of Sturge-Weber syndrome in 52 adults. Am. J. Med. Genet. 57, 35–45 (1995).
pubmed: 7645596
Ville, D., Enjolras, O., Chiron, C. & Dulac, O. Prophylactic antiepileptic treatment in Sturge-Weber disease. Seizure 11, 145–150 (2002).
pubmed: 12018956
Pascual-Castroviejo, I., Pascual-Pascual, S. I., Velazquez-Fragua, R. & Viaño, J. Sturge-Weber syndrome. Study of 55 patients. Can. J. Neurol. Sci. 35, 301–307 (2008).
pubmed: 18714797
Day, A. M. et al. Hypothesis: presymptomatic treatment of Sturge-Weber syndrome with aspirin and antiepileptic drugs may delay seizure onset. Pediatr. Neurol. 90, 8–12 (2019).
pubmed: 30482419
Holmes, G. L. et al. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48, 617–630 (2007).
pubmed: 17386056
Nabbout, R. et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA Study. Epilepsia Open 4, 73–84 (2019).
pubmed: 30868117
Doman´ska-Pakieła, D. et al. EEG abnormalities preceding the epilepsy onset in tuberous sclerosis complex patients — a prospective study of 5 patients. Eur. J. Paediatr. Neurol. 18, 458–468 (2014).
pubmed: 24412076
Wu, J. Y. et al. Scalp EEG spikes predict impending epilepsy in TSC infants: a longitudinal observational study. Epilepsia 60, 2428–2436 (2019).
pubmed: 31691264
pmcid: 6910957
Józ´wiak, S. et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 15, 424–431 (2011). This article describes the positive impact of preventive therapeutic management of tuberous sclerosis complex, particularly in terms of cognition and epilepsy.
pubmed: 21507691
Jozwiak, S. et al. Preventive antiepileptic treatment in tuberous sclerosis complex: a long-term, prospective trial. Pediatr. Neurol. 101, 18–25 (2019).
pubmed: 31481332
Jansen, A. C. et al. Long-term, prospective study evaluating clinical and molecular biomarkers of epileptogenesis in a genetic model of epilepsy – tuberous sclerosis complex. Impact 2019, 6–9 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02849457 (2020)
Weschke, B. et al. First results of the EPISTOP study. Neuropediatrics 50, S1–S55 (2019).
Bok, L. A. et al. Antenatal treatment in two Dutch families with pyridoxine-dependent seizures. Eur. J. Pediatr. 169, 297–303 (2010).
pubmed: 19588165
Klein, P. & Tyrlikova, I. Prevention of epilepsy: should we be avoiding clinical trials? Epilepsy Behav. 72, 188–194 (2017).
pubmed: 28647441
Klepper, J. Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 49, 46–49 (2008).
pubmed: 19049586
Klepper, J., Fischbarg, J., Vera, J. C., Wang, D. & De Vivo, D. C. GLUT1-deficiency: Barbiturates potentiate haploinsufficiency in vitro. Pediatr. Res. 46, 677–683 (1999).
pubmed: 10590023
Wong, H. Y. et al. Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J. Cell. Biochem. 96, 775–785 (2005).
pubmed: 16149077
Klepper, J., Flörcken, A., Fischbarg, J. & Voit, T. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro. Eur. J. Pediatr. 162, 84–89 (2003).
pubmed: 12548383
Stockler, S. et al. Pyridoxine dependent epilepsy and antiquitin deficiency. Clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol. Genet. Metab. 104, 48–60 (2011).
pubmed: 21704546
Hoffmann, G. F. et al. Pyridoxal 5’-phosphate may be curative in early-onset epileptic encephalopathy. J. Inherit. Metab. Dis. 30, 96–99 (2006).
pubmed: 17216302
Mercimek-Mahmutoglu, S. et al. Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol. Genet. Metab. 101, 409–412 (2010).
pubmed: 20846889
Stockler-Ipsiroglu, S. et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol. Genet. Metab. 111, 16–25 (2014).
pubmed: 24268530
Battini, R. et al. Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: Early treatment can prevent phenotypic expression of the disease. J. Pediatr. 148, 828–830 (2006).
pubmed: 16769397
Schlingmann, K. P. et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J. Am. Soc. Nephrol. 16, 3061–3069 (2005).
pubmed: 16107578
Schaller, A. et al. Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome. BMC Neurol. 11, 4 (2011).
pubmed: 21235791
pmcid: 3032677
Pronicka, E. et al. Drug-resistant epilepsia and fulminant valproate liver toxicity. Alpers-Huttenlocher syndrome in two children confirmed post mortem by identification of p.W748S mutation in POLG gene. Med. Sci. Monit. 17, 203–209 (2011).
Lin, C. M. & Thajeb, P. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA. Metab. Brain Dis. 22, 105–109 (2007).
pubmed: 17226098
Hsu, Y. C. et al. Adult-onset of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome presenting as acute meningoencephalitis: a case report. J. Emerg. Med. 43, e163–e166 (2012).
pubmed: 20036095
Saneto, R. P. et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure 19, 140–146 (2010).
pubmed: 20138553
pmcid: 3099441
Veldman, A. et al. Successful treatment of molybdenum cofactor deficiency type a with cPMP. Pediatrics 125, e1249–e1254 (2010).
pubmed: 20385644
Hyland, K. et al. Folinic acid responsive seizures: a new syndrome? J. Inherit. Metab. Dis. 18, 177–181 (1995).
pubmed: 7564240
Witters, P. et al. Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genet. Med. 22, 1102–1107 (2020).
pubmed: 32103184
pmcid: 7275909
Yuskaitis, C. J. et al. Chronic mTORC1 inhibition rescues behavioral and biochemical deficits resulting from neuronal Depdc5 loss in mice. Hum. Mol. Genet. 28, 2952–2964 (2019).
pubmed: 31174205
pmcid: 6736288
de Calbiac, H. et al. Depdc5 knockdown causes mTOR-dependent motor hyperactivity in zebrafish. Ann. Clin. Transl. Neurol. 5, 510–523 (2018).
pubmed: 29761115
pmcid: 5945968
Dutchak, P. A. et al. Regulation of hematopoiesis and methionine homeostasis by mTORC1 inhibitor NPRL2. Cell Rep. 12, 371–379 (2015).
pubmed: 26166573
pmcid: 4830278
Vawter-Lee, M., Franz, D. N., Fuller, C. E. & Greiner, H. M. Clinical letter: a case report of targeted therapy with sirolimus for NPRL3 epilepsy. Seizure 73, 43–45 (2019).
pubmed: 31733420
Franz, D. N. et al. Everolimus for treatment-refractory seizures in TSC: extension of a randomized controlled trial. Neurol. Clin. Pract. 8, 412–420 (2018).
pubmed: 30564495
pmcid: 6276348
Krueger, D. A. et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol. 74, 679–687 (2013).
pubmed: 23798472
Toledano, M. et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 82, 1578–1586 (2014).
pubmed: 24706013
pmcid: 4013813
Scheibe, F. et al. Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 88, 366–370 (2017).
pubmed: 28003505
Thompson, J. et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 141, 348–356 (2018).
pubmed: 29272336
Irani, S. R. et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136, 3151–3162 (2013).
pubmed: 24014519
Kenney-Jung, D. L. et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol. 80, 939–945 (2016).
pubmed: 27770579
pmcid: 5225882
Lortie, A., Chiron, C., Mumford, J. & Dulac, O. The potential for increasing seizure frequency, relapse, and appearance of new seizure types with vigabatrin. Neurology 43, 24–27 (1993).
Xu, X. et al. Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev. 36, 676–681 (2014).
pubmed: 24168886
Mueller, A. et al. Low long-term efficacy and tolerability of add-on rufinamide in patients with Dravet syndrome. Epilepsy Behav. 21, 282–284 (2011).
pubmed: 21620771
Horn, C. S., Ater, S. B. & Hurst, D. L. Carbamazepine-exacerbated epilepsy in children and adolescents. Pediatr. Neurol. 2, 340–345 (1986).
pubmed: 3508708
Saito, Y., Oguni, H., Awaya, Y., Hayashi, K. & Osawa, M. Phenytoin-induced choreoathetosis in patients with severe myoclonic epilepsy in infancy. Neuropediatrics 32, 231–235 (2001).
pubmed: 11748493
Castro, M. J. et al. First mutation in the voltage-gated NaV1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 29, 308–313 (2009).
pubmed: 19220312
Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140, 1316–1336 (2017).
pubmed: 28379373
Brunklaus, A. et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 61, 387–399 (2020).
pubmed: 32090326
Howell, K. B. et al. SCN2A encephalopathy. Neurology 85, 958–966 (2015).
pubmed: 26291284
pmcid: 4567464
Dilena, R. et al. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy. Brain Dev. 39, 345–348 (2017).
pubmed: 27876397
Blanchard, M. G. et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet. 52, 330–337 (2015).
pubmed: 25725044
pmcid: 4413743
Ohba, C. et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 55, 994–1000 (2014).
pubmed: 24888894
Boerma, R. S. et al. Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 13, 192–197 (2016).
pubmed: 26252990
McNally, M. A. et al. SCN8A epileptic encephalopathy: detection of fetal seizures guides multidisciplinary approach to diagnosis and treatment. Pediatr. Neurol. 64, 87–91 (2016).
pubmed: 27659738
Gardella, E. et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 91, e1112–e1124 (2018).
pubmed: 30171078
Dilena, R. et al. Early treatment with quinidine in 2 patients with epilepsy of infancy with migrating focal seizures (EIMFS) due to gain-of-function KCNT1 mutations: functional studies, clinical responses, and critical issues for personalized therapy. Neurotherapeutics 15, 1112–1126 (2018).
pubmed: 30112700
pmcid: 6277296
Yoshitomi, S. et al. Quinidine therapy and therapeutic drug monitoring in four patients with KCNT1 mutations. Epileptic Disord. 21, 48–54 (2019).
pubmed: 30782581
Mikati, M. A. et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol. 78, 995–999 (2015).
pubmed: 26369628
pmcid: 4811613
Bearden, D. et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann. Neurol. 76, 457–461 (2014).
pubmed: 25042079
Evely, K. M., Pryce, K. D. & Bhattacharjee, A. The Phe932Ile mutation in KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel phenotype. Neuroscience 351, 65–70 (2017).
pubmed: 28366665
pmcid: 5479566
Ambrosino, P. et al. De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy. Ann. Neurol. 83, 1198–1204 (2018).
pubmed: 29740868
Mao, X. et al. The epilepsy of infancy with migrating focal seizures: identification of de novo mutations of the KCNT2 gene that exert inhibitory effects on the corresponding heteromeric KNa1.1/KNa1.2 potassium channel. Front. Cell. Neurosci. 14, 1 (2020).
pubmed: 32038177
pmcid: 6992647
Weckhuysen, S. et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81, 1697–1703 (2013).
pubmed: 24107868
pmcid: 3812107
Millichap, J. J. et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2, e96 (2016).
pubmed: 27602407
pmcid: 4995058
Schenzer, A. et al. Molecular determinants of KCNQ (KV7) K
pubmed: 15901787
pmcid: 6724866
Mulkey, S. B. et al. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 58, 436–445 (2017).
pubmed: 28139826
pmcid: 5339037
Lauritano, A. et al. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 4, 464–475 (2019).
pubmed: 31440727
pmcid: 6698674
Byers, H. M., Beatty, C. W., Hahn, S. H. & Gospe, S. M. Dramatic response after lamotrigine in a patient with epileptic encephalopathy and a de novo CACNA1A variant. Pediatr. Neurol. 60, 79–82 (2016).
pubmed: 27212419
pmcid: 4987102
Coulter, D. A., Huguenard, J. R. & Prince, D. A. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol. 25, 582–593 (1989).
pubmed: 2545161
Gawel, K. et al. Phenotypic characterization of larval zebrafish (Danio rerio) with partial knockdown of the cacna1a gene. Mol. Neurobiol. 57, 1904–1916 (2020).
pubmed: 31875924
Damaj, L. et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 23, 1505–1512 (2015).
pubmed: 25735478
pmcid: 4613477
Surges, R., Freiman, T. M. & Feuerstein, T. J. Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 44, 150–156 (2003).
pubmed: 12558567
Poolos, N. P., Migliore, M. & Johnston, D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat. Neurosci. 5, 767–774 (2002).
pubmed: 12118259
Chen, X., Shu, S. & Bayliss, D. A. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci. 29, 600–609 (2009).
pubmed: 19158287
pmcid: 2744993
Gao, J. et al. HCN channels contribute to the sensitivity of intravenous anesthetics in developmental mice. Oncotarget 9, 12907–12917 (2018).
pubmed: 29560119
pmcid: 5849183
Gao, K. et al. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS ONE 12, e0170818 (2017).
pubmed: 28182669
pmcid: 5300259
Pierson, T. M. et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann. Clin. Transl. Neurol. 1, 190–198 (2014).
pubmed: 24839611
pmcid: 4019449
Smigiel, R. et al. Further evidence for GRIN2B mutation as the cause of severe epileptic encephalopathy. Am. J. Med. Genet. A 170, 3265–3270 (2016).
pubmed: 27605359
Mullier, B. et al. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 123, 322–331 (2017).
pubmed: 28533163
Li, D. et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am. J. Hum. Genet. 99, 802–816 (2016).
pubmed: 27616483
pmcid: 5065652
Willoughby, J. O., Pope, K. J. & Eaton, V. Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study. Epilepsia 44, 1238–1240 (2003).
pubmed: 12919397
Lossius, K. et al. Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy. Epilepsy Behav. 105, 106944 (2020).
pubmed: 32097883