Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study.
Acute coronary syndrome
CD8+
Endothelial erosion
Optical coherence tomography
Plaque rupture
Shear stress
T cells
Journal
European heart journal
ISSN: 1522-9645
Titre abrégé: Eur Heart J
Pays: England
ID NLM: 8006263
Informations de publication
Date de publication:
01 10 2020
01 10 2020
Historique:
received:
23
01
2020
revised:
15
05
2020
accepted:
13
08
2020
pubmed:
21
10
2020
medline:
15
5
2021
entrez:
20
10
2020
Statut:
ppublish
Résumé
Acute coronary syndromes with intact fibrous cap (IFC-ACS), i.e. caused by coronary plaque erosion, account for approximately one-third of ACS. However, the underlying pathophysiological mechanisms as compared with ACS caused by plaque rupture (RFC-ACS) remain largely undefined. The prospective translational OPTICO-ACS study programme investigates for the first time the microenvironment of ACS-causing culprit lesions (CL) with intact fibrous cap by molecular high-resolution intracoronary imaging and simultaneous local immunological phenotyping. The CL of 170 consecutive ACS patients were investigated by optical coherence tomography (OCT) and simultaneous immunophenotyping by flow cytometric analysis as well as by effector molecule concentration measurements across the culprit lesion gradient (ratio local/systemic levels). Within the study cohort, IFC caused 24.6% of ACS while RFC-ACS caused 75.4% as determined and validated by two independent OCT core laboratories. The IFC-CL were characterized by lower lipid content, less calcification, a thicker overlying fibrous cap, and largely localized near a coronary bifurcation as compared with RFC-CL. The microenvironment of IFC-ACS lesions demonstrated selective enrichment in both CD4+ and CD8+ T-lymphocytes (+8.1% and +11.2%, respectively, both P < 0.05) as compared with RFC-ACS lesions. T-cell-associated extracellular circulating microvesicles (MV) were more pronounced in IFC-ACS lesions and a significantly higher amount of CD8+ T-lymphocytes was detectable in thrombi aspirated from IFC-culprit sites. Furthermore, IFC-ACS lesions showed increased levels of the T-cell effector molecules granzyme A (+22.4%), perforin (+58.8%), and granulysin (+75.4%) as compared with RFC plaques (P < 0.005). Endothelial cells subjected to culture in disturbed laminar flow conditions, i.e. to simulate coronary flow near a bifurcation, demonstrated an enhanced adhesion of CD8+T cells. Finally, both CD8+T cells and their cytotoxic effector molecules caused endothelial cell death, a key potential pathophysiological mechanism in IFC-ACS. The OPTICO-ACS study emphasizes a novel mechanism in the pathogenesis of IFC-ACS, favouring participation of the adaptive immune system, particularly CD4+ and CD8+ T-cells and their effector molecules. The different immune signatures identified in this study advance the understanding of coronary plaque progression and may provide a basis for future development of personalized therapeutic approaches to ACS with IFC. The study was registered at clinicalTrials.gov (NCT03129503).
Identifiants
pubmed: 33080003
pii: 5933808
doi: 10.1093/eurheartj/ehaa703
pmc: PMC7780480
doi:
Banques de données
ClinicalTrials.gov
['NCT03129503']
Types de publication
Clinical Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3549-3560Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL134892
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.
Références
Eur Heart J. 2018 Jun 7;39(22):2077-2085
pubmed: 29547992
Circ Res. 2014 Jun 6;114(12):1852-66
pubmed: 24902970
Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75
pubmed: 10807742
Circulation. 2011 Aug 16;124(7):779-88
pubmed: 21788584
Eur Heart J. 2016 Jun 21;37(24):1932
pubmed: 27174288
Eur Heart J. 2015 Jun 7;36(22):1377-84
pubmed: 25713314
N Engl J Med. 1997 May 1;336(18):1276-82
pubmed: 9113930
Circ Res. 2019 Jan 4;124(1):150-160
pubmed: 30605419
Circulation. 1996 Apr 1;93(7):1354-63
pubmed: 8641024
JACC Cardiovasc Imaging. 2019 Feb;12(2):374-375
pubmed: 30343069
J Am Coll Cardiol. 2018 Sep 25;72(13):1490-1503
pubmed: 30236312
Circ Res. 2017 Jun 23;121(1):31-42
pubmed: 28428204
J Immunol. 2007 Dec 15;179(12):8191-9
pubmed: 18056362
Heart. 1999 Sep;82(3):269-72
pubmed: 10455073
Thromb Haemost. 2016 Mar;115(3):509-19
pubmed: 26791872
Circ Cardiovasc Imaging. 2016 Jun;9(6):
pubmed: 27307548
Blood. 2007 Feb 15;109(4):1381-6
pubmed: 17038526
Int J Cardiol. 2014 Feb 15;171(3):463-6
pubmed: 24439867
J Am Heart Assoc. 2012 Aug;1(4):e002543
pubmed: 23130168
J Am Coll Cardiol. 2012 Mar 20;59(12):1058-72
pubmed: 22421299
Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):2929-37
pubmed: 21960562
Circulation. 2003 Jul 29;108(4):438-44
pubmed: 12860915
Circulation. 2010 Dec 14;122(24):2505-13
pubmed: 21126969
Circulation. 2003 Jun 3;107(21):2741-6
pubmed: 12742998
Eur Heart J. 2012 Oct;33(20):2569-619
pubmed: 22922416
Eur Heart J. 2015 Nov 14;36(43):2984-7
pubmed: 26206212
Circulation. 2017 Sep 19;136(12):1155-1166
pubmed: 28923905
N Engl J Med. 2013 May 23;368(21):2004-13
pubmed: 23697515
Eur Heart J. 2016 Jan 14;37(3):267-315
pubmed: 26320110
J Biomech. 2007;40(11):2349-57
pubmed: 17335832
Eur Heart J. 2007 Mar;28(6):705-10
pubmed: 17347172
Curr Opin Lipidol. 2017 Oct;28(5):434-441
pubmed: 28682809
EuroIntervention. 2016 Aug 20;12(6):716-23
pubmed: 27542783
JACC Cardiovasc Imaging. 2010 Feb;3(2):168-75
pubmed: 20159644
Cell. 2015 May 21;161(5):1229
pubmed: 28910642
Eur Heart J. 2017 Mar 14;38(11):792-800
pubmed: 27578806
PLoS One. 2018 Jan 2;13(1):e0190728
pubmed: 29293656
Nat Med. 2016 Feb;22(2):210-6
pubmed: 26752517
Circulation. 1994 Jan;89(1):36-44
pubmed: 8281670
J Am Heart Assoc. 2017 May 3;6(5):
pubmed: 28468787
Circulation. 2003 Jul 8;108(1):17-23
pubmed: 12821552
JACC Cardiovasc Imaging. 2017 Dec;10(12):1472-1483
pubmed: 28734911
Eur Heart J. 2016 May 14;37(19):1538-49
pubmed: 26761950
Basic Res Cardiol. 2016 Nov;111(6):71
pubmed: 27783202
J Exp Med. 2008 Feb 18;205(2):373-83
pubmed: 18250194
J Clin Invest. 2005 Nov;115(11):3149-56
pubmed: 16211093
J Am Coll Cardiol. 2013 Nov 5;62(19):1748-58
pubmed: 23810884
Eur Heart J. 2015 Jun 7;36(22):1394-404
pubmed: 25755115
Eur Heart J. 2019 May 7;40(18):1411-1422
pubmed: 30907406
Eur Heart J. 2017 Jan 7;38(2):81-92
pubmed: 28158723
JACC Cardiovasc Interv. 2015 Aug 17;8(9):1166-1176
pubmed: 26117464
Eur Heart J. 2018 Jun 7;39(22):2070-2076
pubmed: 29329384
Eur Heart J. 2010 Feb;31(4):401-15
pubmed: 19892716
Circulation. 1998 Jun 2;97(21):2110-6
pubmed: 9626170
JACC Cardiovasc Imaging. 2015 May;8(5):566-575
pubmed: 25890582