Conditional knockdown of integrin beta-3 reveals its involvement in osteolytic and soft tissue lesions of breast cancer skeletal metastasis.


Journal

Journal of cancer research and clinical oncology
ISSN: 1432-1335
Titre abrégé: J Cancer Res Clin Oncol
Pays: Germany
ID NLM: 7902060

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 18 08 2020
accepted: 12 10 2020
pubmed: 22 10 2020
medline: 2 2 2021
entrez: 21 10 2020
Statut: ppublish

Résumé

Integrin β3 (ITGB3) is probably related to skeletal metastasis, which is the most frequent complication in breast cancer progression. We aimed to define its role and suitability as target for anti-metastatic therapy. We generated two MDA-MB-231 cell clones with conditional miRNA-mediated ITGB3 knockdown for analyzing the resulting effects in vitro regarding mRNA expression, proliferation and migration, as well the impact on skeletal metastasis in a nude rat model. Furthermore, ITGB3 levels were analyzed in exosomes from plasma of rats with skeletal metastases, and from MDA-MB-231 cells incubated with these vesicles, as well as from exosomes secreted by cells with conditional ITGB3 knockdown. This inhibition of ITGB3 expression decreased cellular proliferation and more distinctly inhibited cellular migration. Reduction and even complete remissions of respective soft tissue and osteolytic lesions were detected after ITGB3 knockdown in vivo. Furthermore, ITGB3 levels were increased in exosomes isolated from plasma of rats harboring MDA-MB-231 lesions as well as in respective cells incubated with these vesicles in vitro. ITGB3 was distinctly decreased in exosomes from cells with ITGB3 knockdown. The observed in vitro and in vivo anti-ITGB3 effects can be explained by downregulation of specific genes, which have roles in angiogenesis (NPTN, RRM2), tumor growth (NPTN), energy metabolism (ISCA1), cytokinesis (SEPT11), migration (RRM2, STX6), cell proliferation, invasiveness, senescence, tumorigenesis (RRM2) and vesicle trafficking (SEPT11, STX6). ITGB3 has a role in breast cancer skeletal metastasis via gene expression modulation, as mirrored for ITGB3 in exosomes, thus it could serve as target for anti-metastatic therapy.

Identifiants

pubmed: 33083904
doi: 10.1007/s00432-020-03428-y
pii: 10.1007/s00432-020-03428-y
pmc: PMC7817553
doi:

Substances chimiques

ITGB3 protein, human 0
Integrin beta3 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

361-371

Références

Bauerle T, Komljenovic D, Merz M, Berger MR, Goodman SL, Semmler W (2011) Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer 128(10):2453–2462. https://doi.org/10.1002/ijc.25563
doi: 10.1002/ijc.25563 pubmed: 20648558
Castro F, Dirks WG, Fahnrich S, Hotz-Wagenblatt A, Pawlita M, Schmitt M (2013) High-throughput SNP-based authentication of human cell lines. Int J Cancer 132(2):308–314. https://doi.org/10.1002/ijc.27675
doi: 10.1002/ijc.27675 pubmed: 22700458
Chen WX, Yang LG, Xu LY, Cheng L, Qian Q, Sun L, Zhu YL (2019) Bioinformatics analysis revealing prognostic significance of RRM2 gene in breast cancer. Biosci Rep. https://doi.org/10.1042/BSR20182062
doi: 10.1042/BSR20182062 pubmed: 31808521 pmcid: 6928526
Cozar-Castellano I, del Valle MM, Trujillo E, Arteaga MF, Gonzalez T, Martin-Vasallo P, Avila J (2004) hIscA: a protein implicated in the biogenesis of iron-sulfur clusters. Biochem Biophys Acta 1700(2):179–188. https://doi.org/10.1016/j.bbapap.2004.05.004
doi: 10.1016/j.bbapap.2004.05.004 pubmed: 15262227
Das V, Kalyan G, Hazra S, Pal M (2018) Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer. J Cell Physiol 233(1):168–185. https://doi.org/10.1002/jcp.25821
doi: 10.1002/jcp.25821 pubmed: 28120356
Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22. https://doi.org/10.1038/nrc2748
doi: 10.1038/nrc2748 pubmed: 20029421 pmcid: 4383089
Georges RB, Adwan H, Hamdi H, Hielscher T, Linnemann U, Berger MR (2011) The insulin-like growth factor binding proteins 3 and 7 are associated with colorectal cancer and liver metastasis. Cancer Biol Ther 12(1):69–79. https://doi.org/10.4161/cbt.12.1.15719
doi: 10.4161/cbt.12.1.15719 pubmed: 21525788
Hamidi H, Ivaska J (2018) Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer 18(9):533–548. https://doi.org/10.1038/s41568-018-0038-z
doi: 10.1038/s41568-018-0038-z pubmed: 30002479 pmcid: 6629548
Hamidi H, Pietila M, Ivaska J (2016) The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer 115(9):1017–1023. https://doi.org/10.1038/bjc.2016.312
doi: 10.1038/bjc.2016.312 pubmed: 27685444 pmcid: 5117799
Hanai N, Nagata K, Kawajiri A, Shiromizu T, Saitoh N, Hasegawa Y, Murakami S, Inagaki M (2004) Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett 568(1–3):83–88. https://doi.org/10.1016/j.febslet.2004.05.030
doi: 10.1016/j.febslet.2004.05.030 pubmed: 15196925
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. https://doi.org/10.1038/nature15756
doi: 10.1038/nature15756 pubmed: 26524530 pmcid: 4788391
Karadag A, Ogbureke KU, Fedarko NS, Fisher LW (2004) Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion. J Natl Cancer Inst 96(12):956–965. https://doi.org/10.1093/jnci/djh169
doi: 10.1093/jnci/djh169 pubmed: 15199115
Kovacheva M, Zepp M, Berger SM, Berger MR (2014) Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis. Oncotarget 5(14):5510–5522. https://doi.org/10.18632/oncotarget.2132
doi: 10.18632/oncotarget.2132 pubmed: 24980816 pmcid: 4170606
Kovacheva M, Zepp M, Schraad M, Berger S, Berger MR (2019) Conditional knockdown of osteopontin inhibits breast cancer skeletal metastasis. Int J Mol Sci. https://doi.org/10.3390/ijms20194918
doi: 10.3390/ijms20194918 pubmed: 31590218 pmcid: 6801824
Liu M, Shen S, Chen F, Yu W, Yu L (2010) Linking the septin expression with carcinogenesis. Mol Biol Rep 37(7):3601–3608. https://doi.org/10.1007/s11033-010-0009-2
doi: 10.1007/s11033-010-0009-2 pubmed: 20195767
Pan L, Zhao Y, Yuan Z, Qin G (2016) Research advances on structure and biological functions of integrins. SpringerPlus 5(1):1094. https://doi.org/10.1186/s40064-016-2502-0
doi: 10.1186/s40064-016-2502-0 pubmed: 27468395 pmcid: 4947080
Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S, Kurian AW, Ford JM, Stockdale FE, Quake SR, Pease RF, Mindrinos MN, Bhanot G, Dairkee SH, Davis RW, Jeffrey SS (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7(5):e33788. https://doi.org/10.1371/journal.pone.0033788
doi: 10.1371/journal.pone.0033788 pubmed: 22586443 pmcid: 3346739
Quan D, Chen K, Zhang J, Guan Y, Yang D, Wu H, Wu S, Lv L (2019) Identification of lncRNA NEAT1/miR-21/RRM2 axis as a novel biomarker in breast cancer. J Cell Physiol. https://doi.org/10.1002/jcp.29225
doi: 10.1002/jcp.29225 pubmed: 31621912 pmcid: 6590427
Raab-Westphal S, Marshall JF, Goodman SL (2017) Integrins as therapeutic targets: successes and cancers. Cancers. https://doi.org/10.3390/cancers9090110
doi: 10.3390/cancers9090110 pubmed: 28832494 pmcid: 5615325
Reufsteck C, Lifshitz-Shovali R, Zepp M, Bauerle T, Kubler D, Golomb G, Berger MR (2012) Silencing of skeletal metastasis-associated genes impairs migration of breast cancer cells and reduces osteolytic bone lesions. Clin Exp Metas 29(5):441–456. https://doi.org/10.1007/s10585-012-9462-8
doi: 10.1007/s10585-012-9462-8
Rodriguez-Pinto D, Sparkowski J, Keough MP, Phoenix KN, Vumbaca F, Han DK, Gundelfinger ED, Beesley P, Claffey KP (2009) Identification of novel tumor antigens with patient-derived immune-selected antibodies. Cancer Immunol Immunother CII 58(2):221–234. https://doi.org/10.1007/s00262-008-0543-0
doi: 10.1007/s00262-008-0543-0 pubmed: 18568347
Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664. https://doi.org/10.1056/NEJMra030831
doi: 10.1056/NEJMra030831 pubmed: 15084698
Uccello M, Malaguarnera G, Vacante M, Motta M (2011) Serum bone sialoprotein levels and bone metastases. J Cancer Res Ther 7(2):115–119. https://doi.org/10.4103/0973-1482.82912
doi: 10.4103/0973-1482.82912 pubmed: 21768695
Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425. https://doi.org/10.1038/nrc3055
doi: 10.1038/nrc3055 pubmed: 21593787 pmcid: 3666847
Yang X, Lu D, Zhang X, Chen W, Gao S, Dong W, Ma Y, Zhang L (2019) Knockout of ISCA1 causes early embryonic death in rats. Anim Models Exp Med 2(1):18–24. https://doi.org/10.1002/ame2.12059
doi: 10.1002/ame2.12059
Yosifov DY, Dineva IK, Zaharieva MM, Konstantinov SM, Berger MR (2007) The expression level of the tumor suppressor retinoblastoma protein (Rb) influences the antileukemic efficacy of erucylphospho-N, N, N-trimethylpropylammonium (ErPC3). Cancer Biol Ther 6(6):930–935. https://doi.org/10.4161/cbt.6.6.4188
doi: 10.4161/cbt.6.6.4188 pubmed: 17495525
Zepp M, Baeuerle T, Elazar V, Peterschmitt J, Lifshitz-Shovali R, Adwan H, Armbruster FP, Golomb G, Berger MR (2011) Treatment of breast cancer lytic skeletal metastasis using a model in nude rats. In: Gunduz E, Gunduz M (eds) Breast cancer—current and alternative therapeutic modalities. InTech Open Access Publisher, Rijeka, pp 453–488
Zhu L, Xiong X, Kim Y, Okada N, Lu F, Zhang H, Sun H (2016) Acid sphingomyelinase is required for cell surface presentation of Met receptor tyrosine kinase in cancer cells. J Cell Sci 129(22):4238–4251. https://doi.org/10.1242/jcs.191684
doi: 10.1242/jcs.191684 pubmed: 27802163 pmcid: 5117200

Auteurs

Marineta Kovacheva (M)

Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.

Michael Zepp (M)

Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.

Stefan Berger (S)

Department of Molecular Biology, Central Institute of Mental Health, 68159, Mannheim, Germany.

Martin R Berger (MR)

Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. m.berger@dkfz.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH