Insight into watery saliva proteomes of the grain aphid, Sitobion avenae.
function
grain aphid
proteomics
salivary proteins
watery saliva
Journal
Archives of insect biochemistry and physiology
ISSN: 1520-6327
Titre abrégé: Arch Insect Biochem Physiol
Pays: United States
ID NLM: 8501752
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
received:
07
09
2020
revised:
24
09
2020
accepted:
30
09
2020
pubmed:
22
10
2020
medline:
20
1
2021
entrez:
21
10
2020
Statut:
ppublish
Résumé
The grain aphid, Sitobion avenae, is an economically important cereal pest worldwide. Aphid saliva plays an essential role in the interaction between aphids and their host plants. However, limited information is available regarding the proteins found in the saliva of S. avenae. Here, the watery saliva proteins from S. avenae were collected in an artificial diet and identified using a liquid chromatography-mass spectrometry/mass spectrometry analysis. A total of 114 proteins were identified in S. avenae saliva, including several enzymes, binding proteins, and putative effectors, as well as other proteins with unknown functions. In comparison with salivary proteins from nine other aphid species, the most striking feature of the salivary protein from S. avenae was the different patterns of protein functions. Several orthologous proteins secreted by other aphid species such as glucose dehydrogenase, elongation factors, and effector C002 were also detected in S. avenae saliva and speculated to play a significant role in aphid-plant interactions. These results provide further insight into the molecular basis between aphids and cereal plant interactions.
Substances chimiques
Insect Proteins
0
Proteome
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e21752Subventions
Organisme : National Natural Science Foundation of China
ID : 31871979
Organisme : National Natural Science Foundation of China
ID : 31901881
Organisme : National Key R&D Plan in China
ID : 2017YFD0201700
Organisme : National Key R&D Plan in China
ID : 2017YFD0200900
Organisme : National Key R&D Plan in China
ID : 2016YFD0300700
Organisme : State Modern Agricultural Industry Technology System
ID : CARS-22-G-18
Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Atamian, H. S., Chaudhary, R., Cin, V. D., Bao, E., Girke, T., & Kaloshian, I. (2013). In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Molecular Plant-Microbe Interactions, 26(1), 67-74.
Blackman, R. L., & Eastop, V. F. (2000). Aphids on the world's crops-An identification and information guide. Wiley & Sons.
Bos, J. I., Prince, D., Pitino, M., Maffei, M. E., Win, J., & Hogenhout, S. A. (2010). A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLOS Genetics, 6, e1001216.
Boulain, H., Legeai, F., Guy, E., Morlière, S., Douglas, N. E., Oh, J., Murugan, M., Smith, M., Jaquiéry, J., Peccoud, J., White, F. F., Carolan, J. C., Simon, J. C., & Sugio, A. (2018). Fast evolution and. lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants. Genome Biology and Evolution, 10(6), 1554-1572.
Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P., & Kaloshian, I. (2015). Potato aphid salivary proteome: Enhanced salivation using resorcinol and identification of aphid phosphoproteins. Journal of Proteome Research, 14(4), 1762-1778.
Cui, N., Lu, H., Wang, T., Zhang, W., Kang, L., & Cui, F. (2019). Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374(1767), 20180314.
Elzinga, D. A., & Jander, G. (2013). The role of protein effectors in plant-aphid interactions. Current Opinion in Plant Biology, 16(4), 451-456.
Escudero-Martinez, C., Rodriguez, P. A., Liu, S., Santos, P. A., Stephens, J., & Bos, J. I. B. (2020). An aphid effector promotes barley susceptibility through suppression of defence gene expression. Journal of Experimental Botany, 71(9), 2796-2807.
Harmel, N., Létocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., de Pauw, E., Haubruge, E., & Francis, F. (2008). Identification of aphid salivary proteins: A proteomic investigation of Myzus persicae. Insect Molecular Biology, 17(2), 165-174.
Liu, Y., Wang, W. L., Guo, G. X., & Ji, X. L. (2009). Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomologia Experimentalis et Applicata, 130(3), 215-221.
Loudit, S. M. B., Bauwens, J., & Francis, F. (2018). Cowpea aphid-plant interactions: Endosymbionts. and related salivary protein patterns. Entomologia Experimentalis et Applicata, 166, 460-473.
Ma, J., Chen, T., Wu, S. F., Yang, C. Y., Bai, M. Z., Shu, K. X., Zhang, G. Q., Jin, Z., He, F. C., Hermjakob, H., & Zhu, Y. Q. (2019). iProX: An integrated proteome resource. Nucleic Acids Research, 47(D1), 1211-1217.
Miles, P. W. (1999). Aphid saliva. Biological Reviews, 74(1), 41-85.
Nicholson, S. J., Hartson, S. D., & Puterka, G. J. (2012). Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. Journal of Proteomics, 75(7), 2252-2268.
Nicholson, S. J., & Puterka, G. J. (2014). Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. Journal of Proteomics, 105, 186-203.
Rao, S. A. K., Carolan, J. C., & Wilkinson, T. L. (2013). Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLOS One, 8(2), e57413.
Thorpe, P., Cock, P. J. A., & Bos, J. I. B. (2016). Comparative transcriptomics and proteomics of three different aphid species identify core and diverse effector sets. BMC Genomics, 17(1), 172.
Tjallingii, W. F., & Esch, T. H. (1993). Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology, 18(3), 317-328.
Upadhyaya, N. M., Mago, R., Staskawicz, B. J., Ayliffe, M. A., Ellis, J. G., & Dodds, P. N. (2014). A bacterial type III secretion assay for delivery of fungal effector proteins into wheat. Molecular Plant-Microbe Interactions, 27(3), 255-264.
Vandermoten, S., Harmel, N., Mazzucchelli, G., dePauw, E., Haubruge, E., & Francis, F. (2013). Comparative analyses of salivary proteins from three aphid species. Insect Molecular Biology, 23(1), 67-77.
Xu, Q., Tang, C. L., Wang, X. D., Sun, S. T., Zhao, J. R., Kang, Z. S., & Wang, X. J. (2019). An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 10(1), 5571.
Yang, Z., Ma, L., Francis, F., Yang, Y., Chen, H., Wu, H. X., & Chen, X. M. (2018). Proteins identified from saliva and salivary glands of the Chinese gall aphid Schlechtendalia chinensis. Proteomics, 18, e1700378.
Zhang, Y., Fan, J., Francis, F., & Chen, J. L. (2017). Watery saliva secreted by the grain aphid Sitobion avenae stimulates aphid resistance in wheat. Journal of Agricultural and Food Chemistry, 65(40), 8798-8805.
Zhang, Y., Fan, J., Sun, J. R., Francis, F., & Chen, J. L. (2017). Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Scientific Reports, 7(1), 1-14.