Profound implication of histological alterations, haematological responses and biocidal assessment of cationic amphiphiles unified with their molecular architecture.

Biocidal activity Biodegradation Cationic amphiphiles Computational simulation Haematology Histology

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 20 03 2020
accepted: 25 09 2020
pubmed: 23 10 2020
medline: 5 3 2021
entrez: 22 10 2020
Statut: ppublish

Résumé

The interfacial properties depicting the micellization behaviour of the cationic amphiphiles (surfactants) belonging to the class of quaternary ammonium salts varying in degree of hydrophobicity were evaluated using tensiometry, conductivity and fluorescence spectrophotometric methods at 303.15 K. The impact of the amphiphilic nature of these amphiphiles as a function of their concentration is accounted against the selective microbial strains using the well-diffusion approach. Also, its influence on the histological (shrinkage/curling of lamellae, necrosis, haemorrhage, hyperplasia of villi in gills and intestine) alterations and haematological (blood parameters) changes in fingerling of Cirrhinus mrigala (C. mrigala) offers an insight into the stern damages reported as aquatic toxicity. The lesions exhibited moderate to severe alterations that are further correlated with the semi-quantitative mean alteration value (MAV). The in vitro and in vivo findings are explained significantly in terms of amphiphilic hydrophobicity which followed the order: C

Identifiants

pubmed: 33089463
doi: 10.1007/s11356-020-11010-9
pii: 10.1007/s11356-020-11010-9
doi:

Substances chimiques

Cations 0
Micelles 0
Quaternary Ammonium Compounds 0
Surface-Active Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12847-12857

Références

Adedeji OB (2010) Acute effect of diazinon on blood plasma biochemistry in the African catfish (Clarias gariepinus). J Clinical Medi and Res 2:1–6. https://doi.org/10.5897/JCMR.9000004
Aguiar J, Carpena P, Molina-Bolıvar J, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method. J Colloid Interface Sci 258:116–122. https://doi.org/10.1016/S0021-9797(02)00082-6
doi: 10.1016/S0021-9797(02)00082-6
Aiad IA, Tawfik SM, El-Shafie M, Rhman ALA (2018) 4-Aminoantipyrine derived cationic surfactants: synthesis, characterization, surface activity and screening for potential antimicrobial activities. Egypt J Pet 27:327–334. https://doi.org/10.1016/j.ejpe.2017.05.006
doi: 10.1016/j.ejpe.2017.05.006
Aneja K (2007) Experiments in microbiology, plant pathology and biotechnology. New Age International (p) Ltd Publishers, New Delhi
Apha (1981) Supplement to the fifteenth edition of Standard Methods for the Examination of Water and Wastewater: Selected analytical method. Environmental Protection Agency, United States
Blahova J, Modra H, Sevcikova M, Marsalek P, Zelnickova L, Skoric M, Svobodova Z (2014) Evaluation of biochemical, haematological, and histopathological responses and recovery ability of common carp (Cyprinus carpio L.) after acute exposure to atrazine herbicide. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/980948
doi: 10.1155/2014/980948
Chopra I, Hesse L, O’Neill AJ (2002) Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Microbiol 92:4–15. https://doi.org/10.1046/j.1365-2672.92.5s1.13.x
doi: 10.1046/j.1365-2672.92.5s1.13.x
Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171. https://doi.org/10.1016/j.jcis.2010.11.063
doi: 10.1016/j.jcis.2010.11.063
da Silva Montes C, Rosa Filho JS, Rocha RM (2011) Histological biomarker as diagnostic tool for evaluating the environmental quality of Guajará Bay–PA-Brazil, Environmental Monitoring. InTech, pp 36–48. https://doi.org/10.5772/27963
Dani U, Bahadur A, Kuperkar K (2018) Micellization, antimicrobial activity and curcumin solubilization in gemini surfactants: influence of spacer and non-polar tail. Colloid Interfaces Sci Commun 25:22–30. https://doi.org/10.1016/j.colcom.2018.06.002
doi: 10.1016/j.colcom.2018.06.002
Dani U, Bahadur A, Kuperkar K (2019a) Biotoxicity and tissue-specific oxidative stress induced by Gemini surfactant as a protocol on fingerlings of Cirrhinus mrigala (Ham.): an integrated experimental and theoretical methodology. Ecotoxicol Environ Saf 183:1–9. https://doi.org/10.1016/j.ecoenv.2019.109478
doi: 10.1016/j.ecoenv.2019.109478
Dani U, Bahadur A, Kuperkar K (2019b) Validating interfacial behaviour of surface-active ionic liquids (SAILs) with computational study integrated with biocidal and cytotoxic assessment. Ecotoxicol Environ Saf 186:1–9. https://doi.org/10.1016/j.ecoenv.2019.109784
doi: 10.1016/j.ecoenv.2019.109784
Das BK, Mukherjee SC (2003) Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comp Biochem Physiol C Toxicol Pharmacol 134:109–121. https://doi.org/10.1016/s1532-0456(02)00219-3
doi: 10.1016/s1532-0456(02)00219-3
David M, Sangeetha J, Shrinivas J, Harish ER, Naik VR (2015) Effects of deltamethrin on haematological indices of Indian major carp, Cirrhinus mrigala (Hamilton). Int J Pure Appl Zool 3:37–43
De Oliveira DW, Cara AB, Lechuga-Villena M, García-Román M, Melo VM, Gonçalves LR, Vaz DA (2017) Aquatic toxicity and biodegradability of a surfactant produced by Bacillus subtilis ICA56. J Environ Sci Health A 52:174–181. https://doi.org/10.1080/10934529.2016.1240491
doi: 10.1080/10934529.2016.1240491
Deniz N, Ertug Y, Akbulut C, Abar M, Günes S (2014) The histopathological effects of 2, 4- dichlorophenoxyacetic acid on intestine tissue of zebrafish (Danio rerio). Elixir Pollut 74:27021–27024
Denny B, Novotny L, West P, Blesova M, Zamocka J (2005) Antimicrobial activity of a series of 1-alkyl-2-(4-pyridyl) pyridinium bromides against Gram-positive and Gram-negative bacteria. Med Princ Pract 14:377–381. https://doi.org/10.1159/000088108
doi: 10.1159/000088108
Docherty KM, Kulpa CF Jr (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189. https://doi.org/10.1039/B419172B
doi: 10.1039/B419172B
Domínguez H, Rivera M (2005) Mixtures of sodium dodecyl sulfate/dodecanol at the air/water interface by computer simulations. Langmuir 21:7257–7262. https://doi.org/10.1021/la046926s
doi: 10.1021/la046926s
Falk NA (2019) Surfactants as antimicrobials: a brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. J Surfactant Deterg 22:1119–1127. https://doi.org/10.1002/jsde.12293
doi: 10.1002/jsde.12293
Fang ZX, Hong LY, Hao Y (2015) Structure-antimicrobial activity relationship and action mechanism of dimeric quaternary ammonium amphiphiles. IC3ME 2015:417–420
Fazio F (2019) Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture 500:237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030
doi: 10.1016/j.aquaculture.2018.10.030
Feng M, Qu R, Wang C, Wang L, Wang Z (2013) Comparative antioxidant status in freshwater fish Carassius auratus exposed to six current-use brominated flame retardants: a combined experimental and theoretical study. Aquat Toxicol 140:314–323. https://doi.org/10.1016/j.aquatox.2013.07.001
doi: 10.1016/j.aquatox.2013.07.001
Ferreira-Leach A, Hill E (2001) Bioconcentration and distribution of 4-tert-octylphenol residues in tissues of the rainbow trout (Oncorhynchus mykiss). Mar Environ Res 51:75–89. https://doi.org/10.1016/S0141-1136(00)00256-7
doi: 10.1016/S0141-1136(00)00256-7
Finney D (1971) Probit analysis. Cambridge University Press, Cambridge
Gad E, El-Sukkary M, Azzam E (1997) Surface and thermodynamic studies of N-((octyl, dodecyl, and cetyl) oxycarbonylmethyl) pyridinium bromide. Monatshefte für Chemie 128:1237–1246. https://doi.org/10.1007/BF00807255
doi: 10.1007/BF00807255
Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F (2014) Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf B 123:318–325. https://doi.org/10.1016/j.colsurfb.2014.09.033
doi: 10.1016/j.colsurfb.2014.09.033
Georgieva E, Stoyanova S, Velcheva I, Yancheva V (2014) Histopathological alterations in common carp (Cyprinus carpio L.) gills caused by thiamethoxam. Braz Arch Biol Technol 57:991–996. https://doi.org/10.1016/j.colsurfb.2014.09.033
doi: 10.1016/j.colsurfb.2014.09.033
Haloi K, Kalita M, Nath R (2013) The study on the histopathological changes of stomach of Channa punctatus (Bloch) by used pesticide endosulfan. Global J Sci Front Res C Biol Sci 13:1–6
Hoque J, Akkapeddi P, Yarlagadda V, Uppu DS, Kumar P, Haldar J (2012) Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities. Langmuir 28:12225–12234. https://doi.org/10.1021/la302303d
doi: 10.1021/la302303d
Hrenovic J, Ivankovic T, Sekovanic L, Rozic M (2008) Toxicity of dodecylpyridinium and cetylpyridinium clorides against phosphate-accumulating bacterium. Open Life Sci 3:143–148. https://doi.org/10.2478/s11535-008-0014-9
doi: 10.2478/s11535-008-0014-9
Jackson M, Eadsforth C, Schowanek D, Delfosse T, Riddle A, Budgen N (2016) Comprehensive review of several surfactants in marine environments: fate and ecotoxicity. Environ Toxicol Chem 35:1077–1086. https://doi.org/10.1002/etc.3297
doi: 10.1002/etc.3297
Jangir AK, Lad B, Dani U, Shah N, Kuperkar K (2020) In vitro toxicity assessment and enhanced drug solubility profile of green deep eutectic solvent derivatives (DESDs) combined with theoretical validation. RSC Adv 10:24063–24072. https://doi.org/10.1039/C9RA10320A
doi: 10.1039/C9RA10320A
Jawale CS, Dama LB (2010) Haematological changes in the fresh water fish, exposed to sub-lethal concentration of piscicidal compounds from (Solanaceae). Natl J Life Sci 7:81–84
Junior P, Tiera V, Tiera M (2007) A fluorescence probe study of gemini surfactants in aqueous solution: a comparison between n-2-n and n-6-n series of the alkanediyl-a, w-bis (dimethylalkylammonium bromides). Eclética Quím 32:47–54. https://doi.org/10.1590/S0100-46702007000200008
doi: 10.1590/S0100-46702007000200008
Kanoje B, Patel D, Kumar V, Sahoo SK, Parikh J, Kuperkar K (2019) Unraveling the solubilization and cytotoxicity study of poorly water-soluble anti-inflammatory drug in aqueous Gemini surfactants solution with physicochemical characterization and simulation study. Colloids Surf, B 179:437–444. https://doi.org/10.1016/j.colsurfb.2019.03.059
doi: 10.1016/j.colsurfb.2019.03.059
Karsa DR, Porter MR (2012) Biodegradability of surfactants. Springer Science & Business Media
Karu K, Ruzanov A, Ers H, Ivaništšev V, Lage-Estebanez I, García de la Vega J (2016) Predictions of physicochemical properties of ionic liquids with DFT. Computation 4:1–14. https://doi.org/10.3390/computation4030025
doi: 10.3390/computation4030025
Kuperkar K, Modi J, Patel K (2012) Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical gemini surfactants. J Surfactant Deterg 15:107–115. https://doi.org/10.1007/s11743-011-1269-0
doi: 10.1007/s11743-011-1269-0
Lewis DF (2003) Quantitative structure–activity relationships (QSARs) within the cytochrome P450 system: QSARs describing substrate binding, inhibition and induction of P450s. Inflammopharmacology 11:43–73. https://doi.org/10.1163/156856003321547112
doi: 10.1163/156856003321547112
Li X, Zhang T, Min X, Liu P (2010) Toxicity of aromatic compounds to Tetrahymena estimated by microcalorimetry and QSAR. Aquat Toxicol 98:322–327. https://doi.org/10.1016/j.aquatox.2010.03.002
doi: 10.1016/j.aquatox.2010.03.002
Maehara Y, Miyoshi S-I (2017) Antibacterial activities of surfactants in the laundry detergents and isolation of the surfactant resistant aquatic bacteria. Biocontrol Sci 22:229–232. https://doi.org/10.4265/bio.22.229
doi: 10.4265/bio.22.229
Metigouda S (2016) The impact of toxic cadmium chloride on the hematological parameters in fresh water fish Cyprinus carpio (Linnaeus). Int J Pharm Biol Arch 7:38–44
Niu J, Lin H, Gong C, Sun X (2013) Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ Sci Technol 47:14341–14349. https://doi.org/10.1021/es402987t
doi: 10.1021/es402987t
Otitoloju AA (2006) Joint action toxicity of spent lubrication oil and laundry detergent against Poecilia reticulata (Telostei: Poeciliidae). Afr J Aquat Sci 31:125–129. https://doi.org/10.2989/16085910609503879
doi: 10.2989/16085910609503879
Padasala S, Kanoje B, Kuperkar K, Bahadur P (2016) Mixed micellization study of alkyltrimethylammonium and alkyltriphenylphosphonium bromides in aqueous solution. J Surfactant Deterg 19:389–398. https://doi.org/10.1007/s11743-015-1780-9
doi: 10.1007/s11743-015-1780-9
Patel A, Dani U, Bahadur A (2016) Hematological alterations in indian major carp Catla catla (ham.) under the stress of zinc metal ion. J Glob Biosci 5:4298–4304
Qu R, Liu J, Li C, Wang L, Wang Z, Wu J (2016) Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. Water Res 104:34–43. https://doi.org/10.1016/j.watres.2016.07.071
doi: 10.1016/j.watres.2016.07.071
Ray GB, Chakraborty I, Moulik SP (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci 294:248–254. https://doi.org/10.1016/j.jcis.2005.07.006
doi: 10.1016/j.jcis.2005.07.006
Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235–251. https://doi.org/10.1016/S0304-4157(00)00013-7
doi: 10.1016/S0304-4157(00)00013-7
Selvi RT, Ilavazhahan M (2015) Histopathological changes in gill tissue of the fish Catla catla exposed to sublethal concentration of pesticide methyl parathion and a heavy metal ferous sulphate. Biomed Pharmacol J 5:305–312. https://doi.org/10.13005/bpj/358
doi: 10.13005/bpj/358
Shelley JC, Shelley MY (2000) Computer simulation of surfactant solutions. Curr Opin Colloid Interface Sci 5:101–110. https://doi.org/10.1016/S1359-0294(00)00042-X
doi: 10.1016/S1359-0294(00)00042-X
Southamani C, Shanthi G, Deivasigamani M (2015) Hematological response in three Indian major carps in relation to supplementary feeding. Int J Fish Aquat Stud 3:287–294
Steckert LD, Cardoso L, Jerônimo GT, de Pádua SB, Martins ML (2018) Investigation of farmed Nile tilapia health through histopathology. Aquaculture 486:161–169. https://doi.org/10.1016/j.aquaculture.2017.12.021
doi: 10.1016/j.aquaculture.2017.12.021
Tolls J, Haller M, Seinen W, Sijm DT (2000) LAS bioconcentration: tissue distribution and effect of hardness-implications for processes. Environ Sci Technol 34:304–310. https://doi.org/10.1021/es990296c
doi: 10.1021/es990296c
Vieira DB, Carmona-Ribeiro AM (2006) Cationic lipids and surfactants as antifungal agents: mode of action. J Antimicrob Chemother 58:760–767. https://doi.org/10.1093/jac/dkl312
doi: 10.1093/jac/dkl312
Viscardi G, Quagliotto P, Barolo C, Savarino P, Barni E, Fisicaro E (2000) Synthesis and surface and antimicrobial properties of novel cationic surfactants. J Org Chem 65:8197–8203. https://doi.org/10.1021/jo0006425
doi: 10.1021/jo0006425
Wang C, Wei Z, Feng M, Wang L, Wang Z (2014) Comparative antioxidant status in freshwater fish Carassius auratus exposed to eight imidazolium bromide ionic liquids: a combined experimental and theoretical study. Ecotoxicol Environ Saf 102:187–195. https://doi.org/10.1016/j.ecoenv.2014.01.027
doi: 10.1016/j.ecoenv.2014.01.027
Wang D, Galla H-J, Drücker P (2018) Membrane interactions of ionic liquids and imidazolium salts. Biophys Rev 10:735–746. https://doi.org/10.1007/s12551-017-0388-x
doi: 10.1007/s12551-017-0388-x

Auteurs

Unnati Dani (U)

Department of Chemistry, Bhagwan Mahavir College of Science and Technology, Surat, Gujarat, 395007, India.

Farida Minocheherhomji (F)

Department of Microbiology, B. P. Baria Science Institute, Navsari, Gujarat, 396445, India.

Anita Bahadur (A)

Department of Chemistry, Bhagwan Mahavir College of Science and Technology, Surat, Gujarat, 395007, India.

Ketan Kuperkar (K)

Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, 395007, India. ketankuperkar@gmail.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH