How much fluctuating asymmetry in fish is affected by mercury concentration in the Guanabara Bay, Brazil?


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 30 01 2020
accepted: 12 10 2020
pubmed: 30 10 2020
medline: 20 2 2021
entrez: 29 10 2020
Statut: ppublish

Résumé

This study aims to analyze if the fluctuating asymmetry (FA) of the Corocoro grunt Orthopristis ruber is affected by mercury concentration in Brazilian Southeastern eutrophicated bay. The O. ruber fishes were collected in two areas of the Guanabara Bay, Rio de Janeiro, Brazil: Vermelha Beach, influenced to ocean waters, and Paquetá Island, for greater freshwater loads of the rivers of the region, both in wet and dry seasons. Possibly availability of food resources, exposure to other pollutants and harmful agents (pesticide, algal toxicity, among others), and environmental and oceanographic factors may be reflecting on the FA detected for the O. ruber population. Mercury (Hg) is a harmful trace metal when present in the food, because of the high toxicity, high levels of absorption, and low excretion rate. Hg accumulates in human organisms through fish consumption, which may represent a risk to health. Analytical determinations of THg were performed by Direct Mercury Analyzer, following the manufacture's recommendations and following the procedure proposed by Guimarães et al. (Food Sci Nutr 4:398-408, 2015). No evidenced in the influence of THg on FA. In turn, the THg was significantly different between areas. Higher THg levels were found in O. ruber populations in the Vermelha Beach, with mean values ​​of HgT 0.08 ± 0.01 mg/kg

Identifiants

pubmed: 33118071
doi: 10.1007/s11356-020-11240-x
pii: 10.1007/s11356-020-11240-x
doi:

Substances chimiques

Water Pollutants, Chemical 0
Mercury FXS1BY2PGL

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11183-11194

Références

Adams DH, Sonne C (2013) Mercury and histopathology of the vulnerable goliath grouper, Epinephelus itajara, in U.S.waters: a multi-tissue approach. Environ Res 126:254–226. https://doi.org/10.1016/j.envres.2013.05.010
doi: 10.1016/j.envres.2013.05.010
Adams DH, Sonne C, Basu N, Dietz R, Nam DH, Leifsson PS, Jensen AL (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5808–5816. https://doi.org/10.1016/j.scitotenv.2010.08.019
doi: 10.1016/j.scitotenv.2010.08.019
Ansari NR et al (2016) Assessing mercury contamination in a tropical coastal system using the mussel Perna perna and the sea anemone Bunodosoma caissarum. Environ Monit Assess 188:679. https://doi.org/10.1007/s10661-016-5683-7
doi: 10.1007/s10661-016-5683-7
Baptista-Neto JA, Crapez M, Vilela CG, McAllister JJ (2005) Concentration and bioavailability of heavy metals in sediments from Niteroi harbour/S.E. Brazil. J Coast Res 21:811–817. https://doi.org/10.2112/012-NIS.1
doi: 10.2112/012-NIS.1
Baptista-Neto JA et al (2016) Environmental change in Guanabara Bay, SE Brazil, based in microfaunal, pollen and geochemical proxies in sedimentary cores. Ocean Coast Manag 143:4–15. https://doi.org/10.1016/j.ocecoaman.2016.04.010
doi: 10.1016/j.ocecoaman.2016.04.010
Beckvar N, Field J, Salazar S, Hoff R (1996) Contaminants in aquatic habitats at hazardous waste sites: mercury. National Ocean Service, Seattle, Washington
Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Mercury accumulation in Yellowfin tuna (Thunnus albacares) with regards to muscle type, muscle position and fish size. Food Chem 190:351–356. https://doi.org/10.1016/j.foodchem.2015.05.109
doi: 10.1016/j.foodchem.2015.05.109
Botaro D, Torres JPM, Schramm KW, Malm O (2012) Mercury levels in feed and muscle of farmed tilapia. Am J Ind Med 55:1159–2265. https://doi.org/10.1002/ajim.22021
doi: 10.1002/ajim.22021
Boylan H, Kingston S (1998) One-step mercury analysis. Milestone application note. Am Lab 30:25–26
Castro MS, Bonecker ACT, Valentin JL (2005) Seasonal variation in fish larvae at the entrance of Guanabara Bay, Brazil. Braz Arch Biol Technol 48:121–128. https://doi.org/10.1590/S1516-89132005000100016
doi: 10.1590/S1516-89132005000100016
Catanzaro LF, Baptista-Neto JA, Guimaraes MSD, Silva CG (2004) Distinctive sedimentary processes in Guanabara Bay – SE/Brazil, based on the analysis of echo-character (7.0 kHz). Rev Bras Geof 22:69–83
doi: 10.1590/S0102-261X2004000100006
Chaves MCNR et al (2018) Testing the ecocline concept for fish assemblages along the marine-estuarine gradient in a highly-eutrophic estuary (Guanabara Bay, Brazil). Estuar Coast Shelf Sci 211:118–126. https://doi.org/10.1016/j.ecss.2018.02.004
doi: 10.1016/j.ecss.2018.02.004
Corrales D, Acuña A, Salhi M, Saona G, Brugnoli E (2016) Copper, zinc, mercury and arsenic content in Micropogonias furnieri and Mugil platanus of the Montevideo coastal zone, Río de la Plata. Braz J Oceanogr 64:57–66. https://doi.org/10.1590/S1679-87592016105406401
doi: 10.1590/S1679-87592016105406401
Covelli S, Protopsalti I, Acquavita A, Sperle M, Bonardi M, Emili A (2012) Spatial variation, speciation and sedimentary records of mercury in the Guanabara Bay (Rio de Janeiro, Brazil). Cont Shelf Res 35:239–242. https://doi.org/10.1016/j.csr.2011.12.003
doi: 10.1016/j.csr.2011.12.003
Fistarol GO, Coutinho FH, Moreira APB, Venas T, Cánovas A, de Paula SEM, Coutinho R, de Moura RL, Valentin JL, Tenenbaum DR, Paranhos R, do Valle RAB, Vicente ACP, Amado Filho GM, Pereira RC, Kruger R, Rezende CE, Thompson CC, Salomon PS, Thompson FL (2015) Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Frontiers 6:1232. https://doi.org/10.3389/fmicb.2015.01232
doi: 10.3389/fmicb.2015.01232
Franco ACS, Santos LN (2018) Habitat-dependent responses of tropical fish assemblages to environmental variables in a marine-estuarine transitional system. Estuar Coast Shelf Sci 211:1–8. https://doi.org/10.1016/j.ecss.2018.02.003
doi: 10.1016/j.ecss.2018.02.003
Franco ACS, Chaves MCN, Castelo-Branco MPB, Santos LN (2016) Responses of fish assemblages of sandy beaches to different anthropogenic and hydrodynamic influences. J Fish Biol 89:921–938. https://doi.org/10.1111/jfb.12889
doi: 10.1111/jfb.12889
Gagliardi et al (2019) A re-evaluation of chironomid deformities as an environmental stress response: avoiding survivorship Bias and testing non contaminant biological factors. Environ Toxicol Chem 38. https://doi.org/10.1002/etc.4446
Gewurtz SB, Bhavsar SP, Fletcher R (2011) Influence of fish size and sex on mercury/PCB concentration: importance for fish consumption advisories. Environ Int 37:425–434
doi: 10.1016/j.envint.2010.11.005
Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and applications. Symmetry 2:466–540
doi: 10.3390/sym2020466
Guerrieri A, Eslava N, González LW, Guevara F (2015) Parámetros de crecimiento y mortalidad de Orthopristis ruber (Perciformes: Haemulidae) en el archipiélago Los Frailes, Venezuela. Rev Biol Trop 63:189–198
doi: 10.15517/rbt.v63i1.13727
Guimarães CFM, Mársico ET, Monteiro MLG, Lemos M, Mano SB, Conte Junior CA (2015) The chemical quality of frozen Vietnamese Pangasius hypophthalmus fillets. Food Sci Nutr 4:398–408. https://doi.org/10.1002/fsn3.302
doi: 10.1002/fsn3.302
Hammer O, Harper DA, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4(1):9
Herring G, Eagles-Smith CA, Ackerman JT (2017) Mercury exposure may influence fluctuating asymmetry in waterbirds. Environ Toxicol Chem 36:1599–1605. https://doi.org/10.1002/etc.3688
doi: 10.1002/etc.3688
INMET - Instituto Nacional de Meteorologia (2018) Banco de Dados Meteorológicos para Ensino e Pesquisa-BDMEP. Brasília, DF, Brasil. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
Ipolyi I, Massanisso P, Sposato S, Fodor P, Morabito R (2004) Concentration levels of total and methylmercury in mussel samples collected along the coasts of Sardinia Island (Italy). Anal Chim Acta 505:145–151. https://doi.org/10.1016/S0003-2670(03)00174-0
doi: 10.1016/S0003-2670(03)00174-0
Jankovská I, Miholová D, Romočuský Š, Petrtýl M, Langrová I, Kalous L, Sloup V, Válek P, Vadlejch J, Lukešová D (2014) Importance of fish gender as a factor in environmental monitoring of mercury. Environ Sci Pollut Res 9:6239–6242. https://doi.org/10.1007/s11356-013-2459-2
doi: 10.1007/s11356-013-2459-2
Jinadasa BKKK, Fowler SW (2019) Critical review of mercury contamination in Sri Lankan fish and aquatic products. Mar Pollut Bull 149:110526. https://doi.org/10.1016/j.marpolbul.2019.110526
doi: 10.1016/j.marpolbul.2019.110526
Johnson A, Bediako B, Wirth E (2011) Metal concentrations in monkfish, Lophius americanus, from the northeastern USA. Environ Monit Assess 177:385–397. https://doi.org/10.1007/s10661-010-1641-y
doi: 10.1007/s10661-010-1641-y
Jones BC, Little AC, Penton-Voak IS, Tiddeman BP, Burt DM, Perrett DI (2001) Facial symmetry and judgements of apparent health support for a “good genes” explanation of the attractiveness–symmetry relationship. Evol Hum Behav 22:417–429
doi: 10.1016/S1090-5138(01)00083-6
Kehrig HA, Malm O, Moreira I (1998) Mercury in a widely consumed fish Micropogonias furnieri (Demarest, 1823) from four main Brazilian estuaries. Sci Total Environ 213:263–271. https://doi.org/10.1016/S0048-9697(98)00099-0
doi: 10.1016/S0048-9697(98)00099-0
Kehrig HA, Costa M, Moreira I, Malm O (2001) Methylmercury and total mercury in estuarine organisms from Rio de Janeiro, Brazil. Environ Sci Pollut Res 8:275–279
doi: 10.1007/BF02987407
Kehrig HÁ, Seixas TG, Baêta AP, Malm O, Moreira I (2010) Inorganic and methylmercury: do they transfer along a tropical coastal food web? Mar Pollut Bull 60:2350–2356. https://doi.org/10.1016/j.marpolbul.2010.08.010
doi: 10.1016/j.marpolbul.2010.08.010
Kehrig HA, Malm O, Palermo EFA, Seixas TG, Baêta AP, Moreira I (2011) Bioconcentração e biomagnificação de metilmercúrio na baía de Guanabara, Rio de Janeiro. Quim Nova 34:377–384
doi: 10.1590/S0100-40422011000300003
Kjerfve B, Ribeiro CHA, Dias GTM, Filippo AM, da Silva Quaresma V (1997) Oceanographic characteristics of an impacted coastal bay: Baia de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17:1609–1643
doi: 10.1016/S0278-4343(97)00028-9
Kristoffersen JB, Magoulas A (2009) Fluctuating asymmetry and fitness correlations in two Engraulis encrasicolus populations. J Fish Biol 75:2723–2736. https://doi.org/10.1111/j.1095-649.2009.02473.x
Lacerda L, Malm O (2008) Contaminação por mercúrio em ecossistemas aquáticos: uma análise das áreas críticas. Est Avan 22:173–190. https://doi.org/10.1590/S0103-40142008000200011
doi: 10.1590/S0103-40142008000200011
Lajus D, Yurtseva A, Birch G, Booth DJ (2015) Fluctuating asymmetry as a pollution monitor: the Australian estuarine smooth toadfish Tetractenos glaber (Teleostei: Tetraodontidae). Mar Pollut Bull 101:758–767
doi: 10.1016/j.marpolbul.2015.09.038
Leary RF, Alendorf FW (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol Evol 4:214–217. https://doi.org/10.1016/0169-5347(89)90077-3
doi: 10.1016/0169-5347(89)90077-3
Lens L, Van Dongen S, Matthysen E (2002) Fluctuating asymmetry as an early warning system in the critically endangered Taita thrush. Conserv Biol 16:479–487. https://doi.org/10.1046/j.1523-1739.2002.00516.x
doi: 10.1046/j.1523-1739.2002.00516.x
Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, p 283
doi: 10.1017/CBO9780511615146
Leung B, Forbes MR, Houle D (2000) Fluctuating asymmetry as a bioindicator of stress: comparing efficacy of analyses involving multiple traits. Am Nat 155:101–115. https://doi.org/10.1086/303298
doi: 10.1086/303298
Mabrouk L, Guarred T, Hamza A, Messaoudi I, Hellal AN (2014) Fluctuating asymmetry in grass goby Zosterisessor ophiocephalus Pallas, 1811 inhabiting polluted and unpolluted area in Tunisia. Mar Pollut Bull 85:248–251
doi: 10.1016/j.marpolbul.2014.06.015
Marcovecchio JE (2004) The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in La Plata river estuary. Sci Total Environ 323:219–226. https://doi.org/10.1016/j.scitotenv.2003.09.029
doi: 10.1016/j.scitotenv.2003.09.029
Mayr LM et al (1989) Hydrobiological characterization of Guanabara Bay. In: Magoon O, Neves C (eds) Coastlines of Brazil. American Society of Civil Engineers, New York, pp 124–138
Menezes NA, Figueiredo LL (1980) Manual de peixes marinhos do sudeste do Brasil. IV Teleostei (3) 1ª Ed. Museu de Zoologia de São Paulo, São Paulo, p 98
Moller AP, Swaddle JP (1997) Asymmetry, developmental stability, and evolution. Oxford University Press Oxford, Oxford
Moser GAO et al (2016) The influence of surface low-salinity waters and cold subsurface water masses on picoplankton and ultraplankton distribution in the continental shelf off Rio de Janeiro, SE Brazil. Cont Shelf Res 120:82–95. https://doi.org/10.1016/j.csr.2016.02.017
doi: 10.1016/j.csr.2016.02.017
Muto EY, Corbisier TN, Coelho LI, Arantes LPL, Chalom A, Soares LSH (2014) Trophic groups of demersal fish of Santos Bay and adjacent continental shelf, São Paulo state, Brazil: temporal and spatial comparisons. Braz J Oceanogr 62(2):89–102. https://doi.org/10.1590/S1679-87592014045906202
doi: 10.1590/S1679-87592014045906202
Oliveira-Souza W, Lavrado HP (2017) Population structure and temporal variation of the roughneck shrimp Rimapenaeus constrictus (Decapoda: Penaeoidea) in a coastal bay of the southwestern Atlantic. Mar Biol Res 13:1073–1083. https://doi.org/10.1080/17451000.2017.1342846
doi: 10.1080/17451000.2017.1342846
Oxnevad SA, Heibo E, Vollestad LA (2002) Is there a relationship between fluctuating asymmetry and reproductive investment in perch (Perca fluviatilis)? Can J Zool 80:120–125. https://doi.org/10.1139/z01-215
Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental instability: its origins and evolutionary implications. Kluwer, Netherlands, pp 335–364
doi: 10.1007/978-94-011-0830-0_26
Palmer AR (1996) Waltzing with asymmetry. BioSc 46:518–532
doi: 10.2307/1312930
Palmer R, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Evol Syst 17:391–421
doi: 10.1146/annurev.es.17.110186.002135
Palmer AR, Strobeck C (1992) Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distributions and power of statistical tests. Acta Zool Fenn 191:55–70
Palmer AR, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Polak M (ed) Developmental instability (DI): causes and consequences. Oxford University Press, Oxford, pp 279–319
Pankakoski E, Koivisto I, Hyvärinen H (1992) Reduced developmental stability as an indicator of heavy metal pollution in the common shrew Sorex araneus. Acta Zool Fenn 191:137–144
Paranhos R, Mayr LM (1993) Seasonal patterns of temperature and salinity in Guanabara Bay, Brazil. Fresenius Environ Bull 2:647–652
Paraquetti HHM et al (2007) Mercury speciation changes in waters of the Sepetiba Bay, SE Brazil during tidal events and different seasons. J Braz Chem Soc 18:1259–1269. https://doi.org/10.1590/S0103-50532001000100013
doi: 10.1590/S0103-50532001000100013
Rabitsch WD (1997) Seasonal metal accumulation patterns in the red wood ant Formica pratensis (hymenoptera) at contaminated and reference sites. J Appl Ecol 34:1455–1461
doi: 10.2307/2405261
Seixas TG, Moreira I, Malm O, Kehrig HA (2013) Ecological and biological determinants of methylmercury accumulation in tropical coastal fish. Environ Sci Pollut Res 20:1142–1150. https://doi.org/10.1007/s11356-012-1036-4
doi: 10.1007/s11356-012-1036-4
Seixas LB, Santos AFGN, Santos LN (2016) Fluctuating asymmetry: a tool for impact assessment on fish populations in a tropical polluted bay, Brazil. Ecol Indic 71:522–532. https://doi.org/10.1016/j.ecolind.2016.07.024
doi: 10.1016/j.ecolind.2016.07.024
Silva CAD et al (2011) Mercury speciation in fish of the Cabo Frio upwelling region, SE-Brazil. Braz J Oceanogr 59:259–266
doi: 10.1590/S1679-87592011000300006
Silva-Júnior DR, Paranhos R, Vianna M (2016) Spatial patterns of distribution and the influence of seasonal and abiotic factors on demersal ichthyofauna in an estuarine tropical bay. J Fish Biol 89:821–846. https://doi.org/10.1111/jfb.13033
doi: 10.1111/jfb.13033
Soares LSH, Arantes LPL, Lamas RA, Lima FA, Pucci MCJ, Rossi-Wongtschowski CLDB (2018) Fish feeding interactions in a subtropical coastal system in the southwestern Atlantic. Ocean Coast Manag 164:115–127. https://doi.org/10.1016/j.ocecoaman.2018.04.002
doi: 10.1016/j.ocecoaman.2018.04.002
Soares-Gomes A, da Gama BAP, Baptista Neto JA, Freire DG, Cordeiro RC, Machado W, Bernardes MC, Coutinho R, Thompson FL, Pereira RC (2016) An environmental overview of Guanabara Bay, Rio de Janeiro. Reg Stud Mar Sci 18:319–330. https://doi.org/10.1016/j.rsma.2016.01.009
doi: 10.1016/j.rsma.2016.01.009
Souza UP, Costa RC, Martins IA, Fransozo A (2008) Relationships among Sciaenidae fish (Teleostei: Perciformes) and Penaeoidea shrimp (Decapoda: Dendrobranchiata) biomass from the north coast of São Paulo State, Brazil. Biota Neotrop 8:83–92. https://doi.org/10.1590/S1676-06032008000100011
doi: 10.1590/S1676-06032008000100011
Stern G et al (2011) Chapter 4, how does climate change influence Arctic mercury? AMAP assessment 2011: Mercury in the Arctic, pp 67–83
Sunderland E et al (2009) Mercury sources, distribution and bioavailability in the North Pacific Ocean: insights from data and models. Glob Biogeochem Cycles 23. https://doi.org/10.1029/2008GB003425
Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn and Bacon, Boston, p 256
van Dongen JJM et al (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia 13:1901–1928. https://doi.org/10.1038/sj.leu.2401592
Vasconcellos RM, Santos JNS, Silva MA, Araújo FG (2007) Efeito do grau de exposição às ondas sobre a comunidade de peixes juvenis em praias arenosas do município do Rio de Janeiro, Brasil. Biota Neotrop 7:171–178
doi: 10.1590/S1676-06032007000100013
Vazzoler AEAM (1996) Biologia da Reprodução dos Teleósteos: teoria e prática. SBI/EDUEM, São Paulo, p 169
Vianna M, Verani JR (2002) Biologia populacional de Orthopristis ruber (Teleostei, Haemulidae) espécie acompanhante da pesca de arrasto do camarão-rosa, no sudeste brasileiro. Atlânt 23:27–36
doi: 10.5088/atl.2002.4
Vianna M et al (2012) Estado atual de conhecimento sobre a ictiofauna. In: Meniconi MFG, Silva TA, Fonseca ML, Lima SOF, Lima EFA, Lavrado HP, Figueiredo AG (eds) Baía de Guanabara. Síntese do Conhecimento Ambiental. Vol. II. Biodiversidade. PETROBRAS, Rio de Janeiro, pp 170–195
Vollestad LA, Fjeld E, Haugen T, Oxnevad SA (1998) Developmental instability in grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Environ Pollut 101:349–354
doi: 10.1016/S0269-7491(98)00055-4
Young NC (2004) Effect of mercury concentration on asymmetry in fish skull. MSc thesis. University of Georgia, Athens
Zupo V, Graber G, Kamel S, Plichta V, Granitzer S, Gundacker C, Wittmann K (2019) Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environ Pollut 255:112975
doi: 10.1016/j.envpol.2019.112975

Auteurs

Luana Barbosa Seixas (LB)

Graduate Course in Ocean and Earth Dynamics, Fluminense Federal University (UFF), Av. General Milton Tavares de Souza, s/n, 4° andar, Campus da Praia Vermelha, Niterói, RJ, 24210-346, Brazil.

Carlos Adam Conte-Junior (CA)

Department of Food Technology, Fluminense Federal University (UFF), Rua Vital Brasil, 64, Niterói, RJ, 24230340, Brazil.

Alejandra Filippo Gonzalez Neves Dos Santos (AFGN)

Department of Zootechny and Sustainable Socioenvironmental Development, Fluminense Federal University (UFF), Rua Vital Brasil, 64, Niterói, RJ, 24230340, Brazil. alejandrafilippo@hotmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH