Contrast sensitivity deficits in schizophrenia: A psychophysical investigation.
antipsychotic medication
sensory processing
spatial frequency
visual perception
Journal
The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
02
09
2019
revised:
22
10
2020
accepted:
23
10
2020
pubmed:
30
10
2020
medline:
29
6
2021
entrez:
29
10
2020
Statut:
ppublish
Résumé
Individuals with schizophrenia have problems with visual contrast processing. The current study investigated contrast sensitivity (CS) in schizophrenia/schizoaffective disorder to elucidate the underlying neural mechanisms affected by this disorder and to identify critical testing conditions that distinguish individuals with the disorder from healthy individuals. Principal component analysis was applied to the data (N = 143) to separate responses from distinct visual pathways. Participants were 68 patients and 75 age-similar controls. CS was obtained using a forced-choice psychophysical paradigm with grating patterns of low to high spatial frequency presented at short and long durations. Linear mixed-effects models were used to examine differences in log CS with respect to group, duration, and stimulus condition. Lower CSs were found in patients compared to controls over all stimulus conditions with the magnitude of deficits dependent on both spatial frequency and stimulus duration. Log CSs to low and high spatial frequencies loaded onto separate principal components, supporting the existence of two psychophysical mechanisms, transient and sustained. Critical conditions were identified to tap each mechanism. Visual acuity was correlated moderately with log CS to high, but not low, spatial frequencies, and deficits found for acuity and CS to moderate/high spatial frequencies (4-21 cycles/degree) appear to reflect dysfunction in the sustained mechanism. CS deficits found at the lowest spatial frequency tested (0.5 cycles/degree) appear to reflect dysfunction in the transient mechanism. Both types of CS deficits may have diagnostic value and implications for social and neurocognitive deficits in this disorder.
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1155-1170Informations de copyright
© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Références
Abramov, I., Gordon, J., Feldman, O., & Chavarga, A. (2012). Sex & vision I: Spatio-temporal resolution. Biology of Sex Differences, 3, 20.
Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., Hämäläinen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 103, 449-454. https://doi.org/10.1073/pnas.0507062103
Bodis-Wollner, I. (1972). Visual acuity and contrast sensitivity in patients with cerebral lesions. Science, 178, 769-771. https://doi.org/10.1126/science.178.4062.769
Breitmeyer, B., & Ganz, L. (1977). Temporal studies with flashed gratings inferences about human transient and sustained channels. Vision Research, 17, 861-865. https://doi.org/10.1016/0042-6989(77)90130-4
Burbeck, C. A., & Kelly, D. H. (1980). Spatiotemporal characteristics of visual mechanisms: Excitatory-inhibitory model. Journal of the Optical Society of America, 70, 1121-1126. https://doi.org/10.1364/JOSA.70.001121
Butler, P. D., Abeles, I. Y., Weiskopf, N. G., Tambini, A., Jalbrzikowski, M., Legatt, M. E., Zemon, V., Loughead, J., Gur, R. C., & Javitt, D. C. (2009). Sensory contributions to impaired emotion processing in schizophrenia. Schizophrenia Bulletin, 35, 1095-1107. https://doi.org/10.1093/schbul/sbp109
Butler, P. D., & Javitt, D. C. (2005). Early-stage visual processing deficits in schizophrenia. Current Opinion in Psychiatry, 18, 151-157. https://doi.org/10.1097/00001504-200503000-00008
Butler, P. D., Martinez, A., Foxe, J. J., Kim, D., Zemon, V., Silipo, G., Mahoney, J., Shpaner, M., Jalbrzikowski, M., & Javitt, D. C. (2007). Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain, 130, 417-430. https://doi.org/10.1093/brain/awl233
Butler, P. D., Schechter, I., Zemon, V., Schwartz, S. G., Greenstein, V. C., Gordon, J., Schroeder, C. E., & Javitt, D. C. (2001). Dysfunction of early-stage visual processing in schizophrenia. American Journal of Psychiatry, 158, 1126-1133. https://doi.org/10.1176/appi.ajp.158.7.1126
Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., Revheim, N., Silipo, G., & Javitt, D. C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Archives of General Psychiatry, 62, 495-504. https://doi.org/10.1001/archpsyc.62.5.495
Cadenhead, K. S., Dobkins, K., McGovern, J., & Shafer, K. (2013). Schizophrenia spectrum participants have reduced visual contrast sensitivity to chromatic (red/green) and luminance (light/dark) stimuli: New insights into information processing, visual channel function, and antipsychotic effects. Frontiers in Psychology, 4, 535. https://doi.org/10.3389/fpsyg.2013.00535
Calderone, D. J., Hoptman, M. J., Martinez, A., Nair-Collins, S., Mauro, C. J., Bar, M., Javitt, D. C., & Butler, P. D. (2013). Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex, 23, 1849-1858. https://doi.org/10.1093/cercor/bhs169
Calderone, D. J., Martinez, A., Zemon, V., Hoptman, M. J., Hu, G., Watkins, J. E., Javitt, D. C., & Butler, P. D. (2013). Comparison of psychophysical, electrophysiological, and fMRI assessment of visual contrast responses in patients with schizophrenia. NeuroImage, 67, 153-162. https://doi.org/10.1016/j.neuroimage.2012.11.019
Campbell, F. W., & Maffei, L. (1974). Contrast and spatial frequency. Scientific American, 231, 106-114. https://doi.org/10.1038/scientificamerican1174-106
Cattell, R. B. (1966). The Scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276. https://doi.org/10.1207/s15327906mbr0102_10
Chen, Y. (2011). Abnormal visual motion processing in schizophrenia: A review of research progress. Schizophrenia Bulletin, 37, 709-715. https://doi.org/10.1093/schbul/sbr020
Chen, Y., Levy, D. L., Sheremata, S., Nakayama, K., Matthysse, S., & Holzman, P. S. (2003). Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry, 160, 1795-1801. https://doi.org/10.1176/appi.ajp.160.10.1795
Cimmer, C., Szendi, I., Csifcsak, G., Szekeres, G., Ambrus Kovacs, Z., Somogyi, I., Benedek, G., Janka, Z., & Keri, S. (2006). Abnormal neurological signs, visual contrast sensitivity, and the deficit syndrome of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 1225-1230. https://doi.org/10.1016/j.pnpbp.2006.03.021
Cornsweet, T. N. (1962). The staircase method in psychophysics. The American Journal of Psychology, 75, 485-491. https://doi.org/10.2307/1419876
Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15, 331-343. https://doi.org/10.1017/S1355617709090481
Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. The Journal of Physiology, 357, 219-240. https://doi.org/10.1113/jphysiol.1984.sp015498
Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., & Javitt, D. C. (2002). Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Archives of General Psychiatry, 59, 1011-1020. https://doi.org/10.1001/archpsyc.59.11.1011
Elliott, D., Whitaker, D., & MacVeigh, D. (1990). Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Research, 30, 541-547. https://doi.org/10.1016/0042-6989(90)90066-T
Everson, R. M., Prashanth, A. K., Gabbay, M., Knight, B. W., Sirovich, L., & Kaplan, E. (1998). Representation of spatial frequency and orientation in the visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 8334-8338. https://doi.org/10.1073/pnas.95.14.8334
Feigenson, K. A., Keane, B. P., Roche, M. W., & Silverstein, S. M. (2014). Contour integration impairment in schizophrenia and first episode psychosis: State or trait? Schizophrenia Research, 159, 515-520. https://doi.org/10.1016/j.schres.2014.09.028
Fernandes, T. P., Shaqiri, A., Brand, A., Nogueira, R. L., Herzog, M. H., Roinishvili, M., Santos, N. A., & Chkonia, E. (2019). Schizophrenia patients using atypical medication perform better in visual tasks than patients using typical medication. Psychiatry Research, 275, 31-38. https://doi.org/10.1016/j.psychres.2019.03.008
Green, M. (1981). Psychophysical relationships among mechanisms sensitive to pattern, motion and flicker. Vision Research, 21, 971-983. https://doi.org/10.1016/0042-6989(81)90001-8
Green, M. F., Lee, J., Wynn, J. K., & Mathis, K. I. (2011). Visual masking in schizophrenia: Overview and theoretical implications. Schizophrenia Bulletin, 37, 700-708. https://doi.org/10.1093/schbul/sbr051
Green, M. F., Nuechterlein, K. H., & Mintz, J. (1994). Backward masking in schizophrenia and mania. II. Specifying the visual channels. Archives of General Psychiatry, 51, 945-951. https://doi.org/10.1001/archpsyc.1994.03950120017004
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185. https://doi.org/10.1007/BF02289447
Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307. https://doi.org/10.1093/biomet/76.2.297
Hyman, S., Arana, G., & Rosenbaum, J. (1995). In handbook of psychiatric drug therapy (3rd ed., pp. 43-92). Boston: Little, Brown and Company.
Jahshan, C., Wolf, M., Karbi, Y., Shamir, E., & Rassovsky, Y. (2017). Probing the magnocellular and parvocellular visual pathways in facial emotion perception in schizophrenia. Psychiatry Research, 253, 38-42. https://doi.org/10.1016/j.psychres.2017.03.031
Jibson, M. D., & Tandon, R. (1998). New atypical antipsychotic medications. Journal of Psychiatric Research, 32, 215-228. https://doi.org/10.1016/S0022-3956(98)00023-5
Jindra, L. F., & Zemon, V. (1989). Contrast sensitivity testing: A more complete assessment of vision. Journal of Cataract and Refractive Surgery, 15, 141-148. https://doi.org/10.1016/S0886-3350(89)80002-1
Johnson, C. A., & Casson, E. J. (1995). Effects of luminance, contrast, and blur on visual acuity. Optometry and Vision Science, 72, 864-869. https://doi.org/10.1097/00006324-199512000-00004
Kaplan, E. (2004). The M, P, and K pathways of the primate visual system. In L. M. Chalupa & J. S. Werner (Eds.), The visual neurosciences (Vol. 1, pp. 481-493). MIT Press.
Kaplan, E., & Shapley, R. M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 83, 2755-2757. https://doi.org/10.1073/pnas.83.8.2755
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261-276. https://doi.org/10.1093/schbul/13.2.261
Keane, B. P., Kastner, S., Paterno, D., & Silverstein, S. M. (2015). Is 20/20 vision good enough? Visual acuity differences within the normal range predict contour element detection and integration. Psychonomic Bulletin & Review, 22, 121-127. https://doi.org/10.3758/s13423-014-0647-9
Keane, B. P., Paterno, D., Kastner, S., & Silverstein, S. M. (2016). Visual integration dysfunction in schizophrenia arises by the first psychotic episode and worsens with illness duration. Journal of Abnormal Psychology, 125, 543-549. https://doi.org/10.1037/abn0000157
Keesey, U. T. (1972). Flicker and pattern detection: A comparison of thresholds*. Journal of the Optical Society of America, 62, 446-448. https://doi.org/10.1364/JOSA.62.000446
Kelemen, O., Kiss, I., Benedek, G., & Keri, S. (2013). Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: The potential impact of GABA concentration in the visual cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 47, 13-19. https://doi.org/10.1016/j.pnpbp.2013.07.024
Kelly, D. H. (1965). Spatial frequency, bandwidth, and resolution. Applied Optics, 4, 435-437. https://doi.org/10.1364/AO.4.000435
Kelly, D. H. (1977). Visual contrast sensitivity. Optica Acta: International Journal of Optics, 24, 107-129. https://doi.org/10.1080/713819495
Kelly, D. H., & Savoie, R. E. (1973). A study of sine-wave contrast sensitivity by two psychophysical methods. Perception & Psychophysics, 14, 313-318. https://doi.org/10.3758/BF03212397
Keri, S., Antal, A., Szekeres, G., Benedek, G., & Janka, Z. (2002). Spatiotemporal visual processing in schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 190-196. https://doi.org/10.1176/jnp.14.2.190
Keri, S., & Benedek, G. (2007). Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Visual Neuroscience, 24, 183-189. https://doi.org/10.1017/S0952523807070253
Kiss, I., Fabian, A., Benedek, G., & Keri, S. (2010). When doors of perception open: Visual contrast sensitivity in never-medicated, first-episode schizophrenia. Journal of Abnormal Psychology, 119, 586-593. https://doi.org/10.1037/a0019610
Kiss, I., Janka, Z., Benedek, G., & Keri, S. (2006). Spatial frequency processing in schizophrenia: Trait or state marker? Journal of Abnormal Psychology, 115, 636-638. https://doi.org/10.1037/0021-843X.115.3.636
Kulikowski, J. J., & Tolhurst, D. J. (1973). Psychophysical evidence for sustained and transient detectors in human vision. The Journal of Physiology, 232, 149-162. https://doi.org/10.1113/jphysiol.1973.sp010261
Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R., & Valbergt, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America A, 7, 2223-2236. https://doi.org/10.1364/JOSAA.7.002223
Legge, G. E. (1978). Sustained and transient mechanisms in human vision: Temporal and spatial properties. Vision Research, 18, 69-81. https://doi.org/10.1016/0042-6989(78)90079-2
Leucht, S., Kane, J. M., Kissling, W., Hamann, J., Etschel, E., & Engel, R. R. (2005). What does the PANSS mean? Schizophrenia Research, 79, 231-238. https://doi.org/10.1016/j.schres.2005.04.008
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49(Suppl 2), 467.
Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740-749. https://doi.org/10.1126/science.3283936
Martínez, A., Hillyard, S. A., Bickel, S., Dias, E. C., Butler, P. D., & Javitt, D. C. (2012). Consequences of magnocellular dysfunction on processing attended information in schizophrenia. Cerebral Cortex, 22, 1282-1293. https://doi.org/10.1093/cercor/bhr195
Martinez, A., Hillyard, S. A., Dias, E. C., Hagler, D. J. Jr, Butler, P. D., Guilfoyle, D. N., Jalbrzikowski, M., Silipo, G., & Javitt, D. C. (2008). Magnocellular pathway impairment in schizophrenia: Evidence from functional magnetic resonance imaging. Journal of Neuroscience, 28, 7492-7500. https://doi.org/10.1523/JNEUROSCI.1852-08.2008
Martínez, A., Revheim, N., Butler, P. D., Guilfoyle, D. N., Dias, E. C., & Javitt, D. C. (2012). Impaired magnocellular/dorsal stream activation predicts impaired reading ability in schizophrenia. NeuroImage: Clinical, 2, 8-16. https://doi.org/10.1016/j.nicl.2012.09.006
McClure, R. K. (2001). The visual backward masking deficit in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 25, 301-311. https://doi.org/10.1016/S0278-5846(00)00166-4
McGhie, A., & Chapman, J. (1961). Disorders of attention and perception in early schizophrenia. British Journal of Medical Psychology, 34, 103-116. https://doi.org/10.1111/j.2044-8341.1961.tb00936.x
Merigan, W., Byrne, C., & Maunsell, J. (1991). Does primate motion perception depend on the magnocellular pathway? The Journal of Neuroscience, 11, 3422-3429. https://doi.org/10.1523/JNEUROSCI.11-11-03422.1991
Merigan, W. H., & Eskin, T. A. (1986). Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells. Vision Research, 26, 1751-1761. https://doi.org/10.1016/0042-6989(86)90125-2
Merigan, W. H., Katz, L. M., & Maunsell, J. H. (1991). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. Journal of Neuroscience, 11, 994-1001. https://doi.org/10.1523/JNEUROSCI.11-04-00994.1991
Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369-402. https://doi.org/10.1146/annurev.ne.16.030193.002101
Nachmias, J. (1967). Effect of exposure duration on visual contrast sensitivity with square-wave gratings*†. Journal of the Optical Society of America, 57, 421-427. https://doi.org/10.1364/JOSA.57.000421
O'Donnell, B. F., Bismark, A., Hetrick, W. P., Bodkins, M., Vohs, J. L., & Shekhar, A. (2006). Early stage vision in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 86, 89-98. https://doi.org/10.1016/j.schres.2006.05.016
O'Donnell, B. F., Potts, G. F., Nestor, P. G., Stylianopoulos, K. C., Shenton, M. E., & McCarley, R. W. (2002). Spatial frequency discrimination in schizophrenia. Journal of Abnormal Psychology, 111, 620-625. https://doi.org/10.1037/0021-843X.111.4.620
Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity throughout adulthood. Vision Research, 23, 689-699. https://doi.org/10.1016/0042-6989(83)90210-9
Peuskens, J., & Link, C. G. (1997). A comparison of quetiapine and chlorpromazine in the treatment of schizophrenia. Acta Psychiatrica Scandinavica, 96, 265-273. https://doi.org/10.1111/j.1600-0447.1997.tb10162.x
Phillipson, O. T., & Harris, J. P. (1985). Perceptual changes in schizophrenia: A questionnaire survey. Psychological Medicine, 15, 859-866. https://doi.org/10.1017/S0033291700005092
Revheim, N., Butler, P. D., Schechter, I., Jalbrzikowski, M., Silipo, G., & Javitt, D. C. (2006). Reading impairment and visual processing deficits in schizophrenia. Schizophrenia Research, 87, 238-245. https://doi.org/10.1016/j.schres.2006.06.022
Revheim, N., Corcoran, C. M., Dias, E., Hellmann, E., Martinez, A., Butler, P. D., Lehrfeld, J. M., DiCostanzo, J., Albert, J., & Javitt, D. C. (2014). Reading deficits in schizophrenia and individuals at high clinical risk: Relationship to sensory function, course of illness, and psychosocial outcome. The American Journal of Psychiatry, 171, 949-959. https://doi.org/10.1176/appi.ajp.2014.13091196
Riggs, L. A. (1965). Visual acuity. In C. H. Graham (Ed.), Vision and visual perception. Oxford.
Robson, J. G. (1966). Spatial and temporal contrast-sensitivity functions of the visual system. Journal of the Optical Society of America, 56, 1141-1142. https://doi.org/10.1364/JOSA.56.001141
Schechter, I., Butler, P. D., Silipo, G., Zemon, V., & Javitt, D. C. (2003). Magnocellular and parvocellular contributions to backward masking dysfunction in schizophrenia. Schizophrenia Research, 64, 91-101. https://doi.org/10.1016/S0920-9964(03)00008-2
Schechter, I., Butler, P. D., Zemon, V. M., Revheim, N., Saperstein, A. M., Jalbrzikowski, M., Pasternak, R., Silipo, G., & Javitt, D. C. (2005). Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clinical Neurophysiology, 116, 2204-2215. https://doi.org/10.1016/j.clinph.2005.06.013
Schiller, P. H. (2010). Parallel information processing channels created in the retina. Proceedings of the National Academy of Sciences of the United States of America, 107, 17087-17094. https://doi.org/10.1073/pnas.1011782107
Shapley, R. (1990). Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology, 41, 635-658. https://doi.org/10.1146/annurev.ps.41.020190.003223
Sheremata, S., & Chen, Y. (2004). Co-administration of atypical antipsychotics and antidepressants disturbs contrast detection in schizophrenia. Schizophrenia Research, 70, 81-89. https://doi.org/10.1016/j.schres.2003.09.005
Shoemaker, R. C., & House, D. E. (2006). Sick building syndrome (SBS) and exposure to water-damaged buildings: Time series study, clinical trial and mechanisms. Neurotoxicology and Teratology, 28, 573-588. https://doi.org/10.1016/j.ntt.2006.07.003
Shoshina, I. I., & Shelepin, Y. E. (2015). Contrast sensitivity in patients with schizophrenia of different durations of illness. Neuroscience and Behavioral Physiology, 45, 928-936. https://doi.org/10.1007/s11055-015-0103-y
Silverstein, S. M. (2016). Visual perception disturbances in schizophrenia: A unified model. Nebraska Symposium on Motivation, 63, 77-132.
Silverstein, S. M., All, S. D., Kasi, R., Berten, S., Essex, B., Lathrop, K. L., & Little, D. M. (2010). Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI. Psychological Medicine, 40, 1159-1169. https://doi.org/10.1017/S0033291709991735
Silverstein, S. M., & Keane, B. P. (2011). Perceptual organization impairment in schizophrenia and associated brain mechanisms: Review of research from 2005 to 2010. Schizophrenia Bulletin, 37, 690-699. https://doi.org/10.1093/schbul/sbr052
Silverstein, S. M., Keane, B. P., Papathomas, T. V., Lathrop, K. L., Kourtev, H., Feigenson, K., Roche, M. W., Wang, Y., Mikkilineni, D., & Paterno, D. (2014). Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration. PLoS One, 9, e114642. https://doi.org/10.1371/journal.pone.0114642
Silverstein, S. M., & Rosen, R. (2015). Schizophrenia and the eye. Schizophrenia Research: Cognition, 2, 46-55. https://doi.org/10.1016/j.scog.2015.03.004
Slaghuis, W. L. (1998). Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. Journal of Abnormal Psychology, 107, 49-62. https://doi.org/10.1037/0021-843X.107.1.49
Slaghuis, W. L. (2004). Spatio-temporal luminance contrast sensitivity and visual backward masking in schizophrenia. Experimental Brain Research, 156, 196-211. https://doi.org/10.1007/s00221-003-1771-3
Smith, D., Pantelis, C., McGrath, J., Tangas, C., & Copolov, D. (1997). Ocular abnormalities in chronic schizophrenia: Clinical implications. Australian and New Zealand Journal of Psychiatry, 31, 252-256. https://doi.org/10.3109/00048679709073828
Tootell, R. B., Hamilton, S. L., & Switkes, E. (1988). Functional anatomy of macaque striate cortex. IV. Contrast and magno- parvo streams. The Journal of Neuroscience, 8, 1594-1609. https://doi.org/10.1523/JNEUROSCI.08-05-01594.1988
Tootell, R. B. H., & Nasr, S. (2017). Columnar segregation of magnocellular and parvocellular streams in human extrastriate cortex. The Journal of Neuroscience, 37, 8014-8032. https://doi.org/10.1523/JNEUROSCI.0690-17.2017
Vakhrusheva, J., Zemon, V., Bar, M., Weiskopf, N. G., Tremeau, F., Petkova, E., Su, Z., Abeles, I. Y., & Butler, P. D. (2014). Forming first impressions of others in schizophrenia: Impairments in fast processing and in use of spatial frequency information. Schizophrenia Research, 160, 142-149. https://doi.org/10.1016/j.schres.2014.10.012
Viertio, S., Laitinen, A., Perala, J., Saarni, S. I., Koskinen, S., Lonnqvist, J., & Suvisaari, J. (2007). Visual impairment in persons with psychotic disorder. Social Psychiatry and Psychiatric Epidemiology, 42, 902-908. https://doi.org/10.1007/s00127-007-0252-6
Waters, F., Collerton, D., Ffytche, D. H., Jardri, R., Pins, D., Dudley, R., Blom, J. D., Mosimann, U. P., Eperjesi, F., Ford, S., & Laroi, F. (2014). Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease. Schizophrenia Bulletin, 40(Suppl 4), S233-S245. https://doi.org/10.1093/schbul/sbu036
Wetherill, G. B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology, 18, 1-10. https://doi.org/10.1111/j.2044-8317.1965.tb00689.x
Wilson, H. R. (1980). Spatiotemporal characterization of a transient mechanism in the human visual system. Vision Research, 20, 443-452. https://doi.org/10.1016/0042-6989(80)90035-8
Wilson, H. R., & Bergen, J. R. (1979). A four mechanism model for threshold spatial vision. Vision Research, 19, 19-32. https://doi.org/10.1016/0042-6989(79)90117-2
Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. Journal of Clinical Psychiatry, 64, 663-667. https://doi.org/10.4088/JCP.v64n0607
Zemon, V., & Gordon, J. (2006). Luminance-contrast mechanisms in humans: Visual evoked potentials and a nonlinear model. Vision Research, 46, 4163-4180. https://doi.org/10.1016/j.visres.2006.07.007
Zwislocki, J. J., & Relkin, E. M. (2001). On a psychophysical transformed-rule up and down method converging on a 75% level of correct responses. Proceedings of the National Academy of Sciences of the United States of America, 98, 4811-4814. https://doi.org/10.1073/pnas.081082598