Hybridization, polyploidy and clonality influence geographic patterns of diversity and salt tolerance in the model halophyte seashore paspalum (Paspalum vaginatum).

Paspalum halophyte hybridization population genomics salt tolerance triploid

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
01 2021
Historique:
received: 14 08 2020
revised: 16 10 2020
accepted: 23 10 2020
pubmed: 1 11 2020
medline: 22 6 2021
entrez: 31 10 2020
Statut: ppublish

Résumé

In plant species, variation in levels of clonality, ploidy and interspecific hybridization can interact to influence geographic patterns of genetic diversity. These factors commonly vary in plants that specialize on saline habitats (halophytes) and may play a role in how they adapt to salinity variation across their range. One such halophyte is the turfgrass and emerging genomic model system seashore paspalum (Paspalum vaginatum Swartz). To investigate how clonal propagation, ploidy variation, and interspecific hybridization vary across ecotypes and local salinity levels in wild P. vaginatum, we employed genotyping-by-sequencing, cpDNA sequencing and flow cytometry in 218 accessions representing > 170 wild collections from throughout the coastal southern United States plus USDA germplasm. We found that the two morphologically distinct ecotypes of P. vaginatum differ in their adaptive strategies. The fine-textured ecotype is diploid and appears to reproduce in the wild both sexually and by clonal propagation; in contrast, the coarse-textured ecotype consists largely of clonally-propagating triploid and diploid genotypes. The coarse-textured ecotype appears to be derived from hybridization between fine-textured P. vaginatum and an unidentified Paspalum species. These clonally propagating hybrid genotypes are more broadly distributed than clonal fine-textured genotypes and may represent a transition to a more generalist adaptive strategy. Additionally, the triploid genotypes vary in whether they carry one or two copies of the P. vaginatum subgenome, indicating multiple evolutionary origins. This variation in subgenome composition shows associations with local ocean salinity levels across the sampled populations and may play a role in local adaptation.

Identifiants

pubmed: 33128807
doi: 10.1111/mec.15715
doi:

Banques de données

Dryad
['10.5061/dryad.vt4b8gtqg', '10.5061/dryad.vt4b8gtqh']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

148-161

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Ainouche, M. L., Baumel, A., Salmon, A., & Yannic, G. (2004). Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytologist, 161(1), 165-172. https://doi.org/10.1046/j.1469-8137.2003.00926.x
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655-1664. https://doi.org/10.1101/gr.094052.109
Baker, H. G. (1965). Characteristics and modes of origin of weeds. In H. G. Baker, & G. L. Stebbins (Eds.), Genetics of Colonizing Species (pp. 137-172). Academic Press.
Bar-Zvi, D., Lupo, O., Levy, A. A., & Barkai, N. (2017). Hybrid vigor: The best of both parents, or a genomic clash? Current Opinion in Systems Biology, 6, 22-27. https://doi.org/10.1016/j.coisb.2017.08.004
Betto-Colliard, C., Hofmann, S., Sermier, R., Perrin, N., & Stöck, M. (2018). Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172667. https://doi.org/10.1098/rspb.2017.2667
Bor, N. L., & Guest, E. (1968). Flora of Iraq, Vol. 9. Gramineae. Flora of Iraq, Vol. 9. Gramineae. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19690700617
Bricker, E., Calladine, A., Virnstein, R., & Waycott, M. (2018). Mega clonality in an aquatic plant-a potential survival strategy in a changing environment. Frontiers in Plant Science, 9, 1-8. https://doi.org/10.3389/fpls.2018.00435
Brock, J. R., Dönmez, A. A., Beilstein, M. A., & Olsen, K. M. (2018). Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Molecular Phylogenetics and Evolution, 127, 834-842. https://doi.org/10.1016/j.ympev.2018.06.031
Brummitt, R. K. (1983). Report of the committee for spermatophyta: 25. Taxon, 32(2), 279-284. https://doi.org/10.2307/1221981
Burson, B. L. (1981). Genome relations among four diploid Paspalum species. Botanical Gazette, 142(4), 592-596. https://doi.org/10.1086/337261
Chao, D.-Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., & Salt, D. E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341(6146), 658-659. https://doi.org/10.1126/science.1240561
Cheeseman, J. M. (2013). The integration of activity in saline environments: Problems and perspectives. Functional Plant Biology, 40(9), 759-774. https://doi.org/10.1071/FP12285
Coughlan, J. M., Han, S., Stefanović, S., & Dickinson, T. A. (2017). Widespread generalist clones are associated with range and niche expansion in allopolyploids of Pacific Northwest Hawthorns (Crataegus L.). Molecular Ecology, 26(20), 5484-5499. https://doi.org/10.1111/mec.14331
Delomas, T. A. (2019). Differentiating diploid and triploid individuals using single nucleotide polymorphisms genotyped by amplicon sequencing. Molecular Ecology Resources, 19(6), 1545-1551. https://doi.org/10.1111/1755-0998.13073
Doležel, J., Binarová, P., & Lucretti, S. (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biologia Plantarum, 31(2), 113-120. https://doi.org/10.1007/BF02907241
Duncan, R. R., & Carrow, R. N. (2000). Seashore paspalum: The environmental turfgrass, Hoboken, NJ: John Wiley & Sons.
Echarte, A. M., Clausen, A. M., & Sala, C. A. (1992). Numeros cromosomicos y variabilidad morfologica de Paspalum distichum (Poaceae) en la provincia de Buenos Aires (Argentina). Darwiniana, 31(1/4), 185-197. JSTOR. Retrieved from JSTOR.
Edelist, C., Raffoux, X., Falque, M., Dillmann, C., Sicard, D., Rieseberg, L. H., & Karrenberg, S. (2009). Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H. annuus and H. petiolaris (Asteraceae). American Journal of Botany, 96(10), 1830-1838. https://doi.org/10.3732/ajb.0900067
Eudy, D., Bahri, B. A., Harrison, M. L., Raymer, P., & Devos, K. M. (2017). Ploidy level and genetic diversity in the genus Paspalum, group Disticha. Crop Science, 57(6), 3319-3332. https://doi.org/10.2135/cropsci2017.04.0241
Fan, C. (2020). Genetic mechanisms of salt stress responses in halophytes. Plant Signaling & Behavior, 15(1), 1704528. https://doi.org/10.1080/15592324.2019.1704528
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
Fort, A., Ryder, P., McKeown, P. C., Wijnen, C., Aarts, M. G., Sulpice, R., & Spillane, C. (2016). Disaggregating polyploidy, parental genome dosage and hybridity contributions to heterosis in Arabidopsis thaliana. New Phytologist, 209(2), 590-599. https://doi.org/10.1111/nph.13650
Fournier, S., Reager, J. T., Dzwonkowski, B., & Vazquez-Cuervo, J. (2019). Statistical mapping of freshwater origin and fate signatures as land/ocean “regions of influence” in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 124(7), 4954-4973. https://doi.org/10.1029/2018JC014784
Gallego-Tévar, B., Curado, G., Grewell, B. J., Figueroa, M. E., & Castillo, J. M. (2018). Realized niche and spatial pattern of native and exotic halophyte hybrids. Oecologia, 188(3), 849-862. https://doi.org/10.1007/s00442-018-4251-y
Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207
Gompert, Z., & Mock, K. E. (2017). Detection of individual ploidy levels with genotyping-by-sequencing (GBS) analysis. Molecular Ecology Resources, 17(6), 1156-1167. https://doi.org/10.1111/1755-0998.12657
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Harvey, A. C., Fjelldal, P. G., Solberg, M. F., Hansen, T., & Glover, K. A. (2017). Ploidy elicits a whole-genome dosage effect: Growth of triploid Atlantic salmon is linked to the genetic origin of the second maternal chromosome set. BMC Genetics, 18(1), 34. https://doi.org/10.1186/s12863-017-0502-x
Hijmans, R. J., Williams, E., & Vennes, C. (2019). geosphere: spherical trigonometry (Version 1.5-10). Retrieved from https://CRAN.R-project.org/package=geosphere
Jefferies, R. L., & Rudmik, T. (1991). Growth, reproduction and resource allocation in halophytes. Aquatic Botany, 39(1), 3-16. https://doi.org/10.1016/0304-3770(91)90018-Z
Joshi, N. (2011). Sabre: a barcode demultiplexing and trimming tool for FastQ files. https://github.com/najoshi/sabre
Lee, A. K., Ayres, D. R., Pakenham-Walsh, M. R., & Strong, D. R. (2016). Responses to salinity of Spartina hybrids formed in San Francisco Bay, California (S. alterniflora × foliosa and S. densiflora × foliosa ). Biological Invasions, 18(8), 2207-2219. https://doi.org/10.1007/s10530-015-1011-3
Lee, G., Carrow, R. N., & Duncan, R. R. (2004). Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Science, 166(6), 1417-1425. https://doi.org/10.1016/j.plantsci.2003.12.029
Lee, G., Carrow, R. N., & Duncan, R. R. (2005). Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. Scientia Horticulturae, 104(2), 221-236. https://doi.org/10.1016/j.scienta.2004.08.011
Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A., & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 63(1), 19-27. https://doi.org/10.1016/j.envexpbot.2007.10.009
Lee, G., Duncan, R. R., & Carrow, R. N. (2004). Salinity Tolerance of Seashore Paspalum Ecotypes: Shoot Growth Responses and Criteria. HortScience, 39(5), 1138-1142. https://doi.org/10.21273/HORTSCI.39.5.1138
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
Lynch, M. (1984). Destabilizing hybridization, general-purpose genotypesand geographic parthenogenesis. The Quarterly Review of Biology, 59(3), 257-290. https://doi.org/10.1086/413902
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10-12. https://doi.org/10.14806/ej.17.1.200
Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 1-10. https://doi.org/10.3389/fpls.2017.00829
Morrone, O., Aagesen, L., Scataglini, M. A., Salariato, D. L., Denham, S. S., Chemisquy, M. A., Sede, S. M., Giussani, L. M., Kellogg, E. A., & Zuloaga, F. O. (2012). Phylogeny of the Paniceae (Poaceae: Panicoideae): Integrating plastid DNA sequences and morphology into a new classification. Cladistics, 28(4), 333-356. https://doi.org/10.1111/j.1096-0031.2011.00384.x
Oh, D.-H., Dassanayake, M., Bohnert, H. J., & Cheeseman, J. M. (2012). Life at the extreme: Lessons from the genome. Genome Biology, 13(3), 241. https://doi.org/10.1186/gb-2012-13-3-241
Poland, J. A., & Rife, T. W. (2012). Genotyping-by-Sequencing for plant breeding and genetics. The Plant Genome, 5(3), 92-102. https://doi.org/10.3835/plantgenome2012.05.0005
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795
Qi, P., Eudy, D., Schnable, J. C., Schmutz, J., Raymer, P. L., & Devos, K. M. (2019). High density genetic maps of seashore paspalum using genotyping-by-sequencing and their relationship to the Sorghum bicolor genome. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-48257-3
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, . URL http://www.R-project.org/
Rieseberg, L. H., Archer, M. A., & Wayne, R. K. (1999). Transgressive segregation, adaptation and speciation. Heredity, 83(4), 363-372. https://doi.org/10.1038/sj.hdy.6886170
Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., Wilkie, A. O. M., McVean, G., & Lunter, G. (2014). Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nature Genetics, 46(8), 912-918. https://doi.org/10.1038/ng.3036
Róis, A. S., Sádio, F., Paulo, O. S., Teixeira, G., Paes, A. P., Espírito-Santo, D., & Caperta, A. D. (2016). Phylogeography and modes of reproduction in diploid and tetraploid halophytes of Limonium species (Plumbaginaceae): Evidence for a pattern of geographical parthenogenesis. Annals of Botany, 117(1), 37-50. https://doi.org/10.1093/aob/mcv138
Scataglini, M. A., Zuloaga, F. O., Giussani, L. M., Denham, S. S., & Morrone, O. (2014). Phylogeny of new world Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. Plant Systematics and Evolution, 300(5), 1051-1070. https://doi.org/10.1007/s00606-013-0944-1
Shimizu-Inatsugi, R., Terada, A., Hirose, K., Kudoh, H., Sese, J., & Shimizu, K. K. (2017). Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Molecular Ecology, 26(1), 193-207. https://doi.org/10.1111/mec.13738
Soltis, P. S., & Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60(1), 561-588. https://doi.org/10.1146/annurev.arplant.043008.092039
Tan, C., Pan, Q., Cui, C., Xiang, Y., Ge, X., & Li, Z. (2016). Genome-wide gene/genome dosage imbalance regulates gene expressions in synthetic Brassica napus and derivatives (AC, AAC, CCA, CCAA). Frontiers in Plant Science, 7, 1-14. https://doi.org/10.3389/fpls.2016.01432
Torkamaneh, D., Laroche, J., Bastien, M., Abed, A., & Belzile, F. (2017). Fast-GBS: A new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinformatics, 18(1), 5. https://doi.org/10.1186/s12859-016-1431-9
USDA Agricultural Research Service (2015). Germplasm Resources Information Network (GRIN). Ag Data Commons. https://doi.org/10.15482/USDA.ADC/1212393
Vrijenhoek, R. C. (1979). Factors affecting clonal diversity and coexistence. Integrative and Comparative Biology, 19(3), 787-797. https://doi.org/10.1093/icb/19.3.787
Vrijenhoek, R. C., & Parker, E. D. (2009). Geographical parthenogenesis: general purpose genotypes and frozen niche variation. In I. Schön, K. Martens, & P. Dijk (Eds.). Lost Sex: The Evolutionary Biology of Parthenogenesis (pp. 99-131). : Springer. https://doi.org/10.1007/978-90-481-2770-2_6
Webb, D. M., & Knapp, S. J. (1990). DNA extraction from a previously recalcitrant plant genus. Plant Molecular Biology Reporter, 8(3), 180. https://doi.org/10.1007/BF02669514
Welch, M. E., & Rieseberg, L. H. (2002). Habitat divergence between a homoploid hybrid sunflower species, Helianthus paradoxus (Asteraceae), and its progenitors. American Journal of Botany, 89(3), 472-478. https://doi.org/10.3732/ajb.89.3.472
Wu, G.-Q., Lin, L.-Y., Jiao, Q., & Li, S.-J. (2019). Tetraploid exhibits more tolerant to salinity than diploid in sugar beet (Beta vulgaris L.). Acta Physiologiae Plantarum, 41(4), 52. https://doi.org/10.1007/s11738-019-2844-7
Yang, C., Zhao, L., Zhang, H., Yang, Z., Wang, H., Wen, S., Zhang, C., Rustgi, S., von Wettstein, D., & Liu, B. (2014). Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences, 111(32), 11882-11887. https://doi.org/10.1073/pnas.1412839111
Yao, H., Gray, A. D., Auger, D. L., & Birchler, J. A. (2013). Genomic dosage effects on heterosis in triploid maize. Proceedings of the National Academy of Sciences, 110(7), 2665-2669. https://doi.org/10.1073/pnas.1221966110
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E., & Mishonov, A. V. (2018). World Ocean Atlas 2018. Volume 2, Salinity.

Auteurs

David M Goad (DM)

Donald Danforth Plant Science Center, St. Louis, MO, USA.
Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.

Ivan Baxter (I)

Donald Danforth Plant Science Center, St. Louis, MO, USA.

Elizabeth A Kellogg (EA)

Donald Danforth Plant Science Center, St. Louis, MO, USA.

Kenneth M Olsen (KM)

Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.

Articles similaires

Fragaria Light Plant Leaves Osmosis Stress, Physiological
Lakes Salinity Archaea Bacteria Microbiota
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil
Genome, Plant Medicago sativa Crops, Agricultural Genomics Polyploidy

Classifications MeSH