Directed Polymorphism and Mechanofluorochromism of Conjugated Materials through Weak Non-Covalent Control.
Journal
Journal of materials chemistry. C
ISSN: 2050-7526
Titre abrégé: J Mater Chem C Mater
Pays: England
ID NLM: 101601114
Informations de publication
Date de publication:
2019
2019
Historique:
entrez:
2
11
2020
pubmed:
1
1
2019
medline:
1
1
2019
Statut:
ppublish
Résumé
Understanding and manipulating crystal polymorphism can provide novel strategies for materials discovery in organic optoelectronics. In this paper, a series of seven ester-terminated three-ring phenylene ethynylenes (PEs) exhibit structure-dependent polymorphism wherein alkyl chain length modulates the propensity to form violet or green fluorescent solid phases, as well as tunable thermal and mechanofluorochromic (MFC) transitions. These compounds harness "soft" non-covalent control to achieve polymorphism: the electronic substituent effect of the ester groups weakens the fluoroarene-arene (ArF-ArH) interactions that typically direct crystal packing of this class of compounds, increasing competitiveness of other interactions. Small structural modifications tip this balance and shift the prevalence of violet- or green-emitting polymorphs. Compounds with short alkyl chain lengths show both violet and various green fluorescent polymorphs, while the violet fluorescent form dominates with alkyl lengths longer than butyl. Further, thermally induced green-to-violet fluorescent crystal-to-crystal transitions occur for single crystals of
Identifiants
pubmed: 33133604
doi: 10.1039/c9tc01301f
pmc: PMC7597496
mid: NIHMS1037347
doi:
Types de publication
Journal Article
Langues
eng
Pagination
8316-8324Subventions
Organisme : NIH HHS
ID : S10 OD012331
Pays : United States
Déclaration de conflit d'intérêts
Conflicts of interest The authors declare no conflicts of interest.
Références
Nature. 2017 Mar 30;543(7647):657-664
pubmed: 28329756
Chemistry. 2016 Mar 18;22(13):4322-9
pubmed: 26748640
Acc Chem Res. 2010 Sep 21;43(9):1257-66
pubmed: 20560545
J Am Chem Soc. 2016 Oct 5;138(39):12803-12812
pubmed: 27603792
Chem Asian J. 2019 Jan 4;14(1):216-222
pubmed: 30478872
J Am Chem Soc. 2017 Apr 12;139(14):5164-5174
pubmed: 28362486
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10251-10256
pubmed: 30237287
Chem Commun (Camb). 2012 Nov 14;48(88):10895-7
pubmed: 23033156
Chem Commun (Camb). 2012 Sep 18;48(72):9020-2
pubmed: 22825312
Chem Soc Rev. 2015 Dec 7;44(23):8619-35
pubmed: 26400501
J Am Chem Soc. 2018 Jun 20;140(24):7519-7525
pubmed: 29793338
Angew Chem Int Ed Engl. 2007;46(44):8342-56
pubmed: 17902079
Adv Mater. 2016 Feb 10;28(6):1073-95
pubmed: 26461848
J Am Chem Soc. 2013 Jul 10;135(27):9952-67
pubmed: 23750552
IUCrJ. 2015 Sep 22;2(Pt 6):611-9
pubmed: 26594368
J Am Chem Soc. 2010 Feb 24;132(7):2160-2
pubmed: 20108897
J Phys Chem Lett. 2016 Oct 20;7(20):4086-4092
pubmed: 27689314
Chem Commun (Camb). 2016 Sep 18;52(72):10842-5
pubmed: 27480384
J Am Chem Soc. 2017 Jun 7;139(22):7452-7455
pubmed: 28535044
Chem Sci. 2018 May 24;9(24):5415-5426
pubmed: 30009013
Chemistry. 2014 Nov 3;20(45):14826-33
pubmed: 25212481
Chem Rev. 2015 Nov 11;115(21):11718-940
pubmed: 26492387
Adv Mater. 2014 Sep 17;26(35):6168-73
pubmed: 25069771
Nat Chem. 2012 Sep;4(9):699-704
pubmed: 22914189
Chemistry. 2018 Nov 16;24(64):16987-16991
pubmed: 30281848
Mater Chem Front. 2017 Jan 1;1(1):158-166
pubmed: 28239477
Chem Sci. 2017 Dec 12;9(5):1289-1300
pubmed: 29675175
J Am Chem Soc. 2007 Feb 14;129(6):1520-1
pubmed: 17249676