Low serum neutralizing anti-SARS-CoV-2 S antibody levels in mildly affected COVID-19 convalescent patients revealed by two different detection methods.
Adult
Aged
Angiotensin-Converting Enzyme 2
/ metabolism
Antibodies, Neutralizing
/ blood
Antibodies, Viral
/ blood
COVID-19
/ blood
Cell Line
Convalescence
Female
Humans
Immunoglobulin A
/ blood
Immunoglobulin G
/ blood
Male
Middle Aged
Neutralization Tests
/ methods
Spike Glycoprotein, Coronavirus
/ immunology
COVID-19
ELISA
Neutralizing antibody
SARS-CoV-2
Serum
Journal
Cellular & molecular immunology
ISSN: 2042-0226
Titre abrégé: Cell Mol Immunol
Pays: China
ID NLM: 101242872
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
24
07
2020
accepted:
07
10
2020
pubmed:
4
11
2020
medline:
23
4
2021
entrez:
3
11
2020
Statut:
ppublish
Résumé
Neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells via surface-expressed angiotensin-converting enzyme 2 (ACE2). We used a surrogate virus neutralization test (sVNT) and SARS-CoV-2 S protein-pseudotyped vesicular stomatitis virus (VSV) vector-based neutralization assay (pVNT) to assess the degree to which serum antibodies from coronavirus disease 2019 (COVID-19) convalescent patients interfere with the binding of SARS-CoV-2 S to ACE2. Both tests revealed neutralizing anti-SARS-CoV-2 S antibodies in the sera of ~90% of mildly and 100% of severely affected COVID-19 convalescent patients. Importantly, sVNT and pVNT results correlated strongly with each other and to the levels of anti-SARS-CoV-2 S1 IgG and IgA antibodies. Moreover, levels of neutralizing antibodies correlated with the duration and severity of clinical symptoms but not with patient age. Compared to pVNT, sVNT is less sophisticated and does not require any biosafety labs. Since this assay is also much faster and cheaper, sVNT will not only be important for evaluating the prevalence of neutralizing antibodies in a population but also for identifying promising plasma donors for successful passive antibody therapy.
Identifiants
pubmed: 33139905
doi: 10.1038/s41423-020-00573-9
pii: 10.1038/s41423-020-00573-9
pmc: PMC7604543
doi:
Substances chimiques
Antibodies, Neutralizing
0
Antibodies, Viral
0
Immunoglobulin A
0
Immunoglobulin G
0
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
936-944Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : ID39087428
Organisme : Niedersächsische Ministerium für Wissenschaft und Kultur (Lower Saxony Ministry of Science and Culture)
ID : 14-76103-184 CORNONA-11/20
Organisme : Niedersächsische Ministerium für Wissenschaft und Kultur (Lower Saxony Ministry of Science and Culture)
ID : 1476103-184 CORONA-12/20
Références
Zhu, J. et al. Clinical characteristics of 3062 COVID-19 patients: a meta-analysis. J. Med. Virol. 92, 1902–1914 (2020).
doi: 10.1002/jmv.25884
Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).
doi: 10.1056/NEJMoa2001017
Oran, D. P., Topol, E. J. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann. Intern. Med. 173, 362–367 (2020).
doi: 10.7326/M20-3012
Liu, P. P., Blet, A., Smyth, D. & Li, H. The science underlying COVID-19: implications for the cardiovascular system. Circulation 142, 68–78 (2020).
doi: 10.1161/CIRCULATIONAHA.120.047549
Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383, 120–128 (2020).
doi: 10.1056/NEJMoa2015432
Menter, T. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 77, 198–209 (2020).
doi: 10.1111/his.14134
Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).
doi: 10.1007/s00134-020-05991-x
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).
doi: 10.1016/j.cell.2020.02.052
Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020).
doi: 10.1038/s41467-020-15562-9
Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446.e14 (2020).
doi: 10.1016/j.cell.2020.05.042
Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020).
doi: 10.1038/s41577-020-0331-4
Odak, I. et al. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine 57, 102885 (2020).
doi: 10.1016/j.ebiom.2020.102885
Zheng, M. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 17, 533–535 (2020).
doi: 10.1038/s41423-020-0402-2
Thevarajan, I. et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med. 26, 453–455 (2020).
doi: 10.1038/s41591-020-0819-2
Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020; 2020.04.17.20061440.
Ni, L. et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 52, 971–977.e3 (2020).
doi: 10.1016/j.immuni.2020.04.023
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e15 (2020).
doi: 10.1016/j.cell.2020.05.015
Zhang, G., Nie, S., Zhang, Z. & Zhang, Z. Longitudinal change of severe acute respiratory syndrome coronavirus 2 antibodies in patients with coronavirus disease 2019. J. Infect. Dis. 222, 183–188 (2020).
doi: 10.1093/infdis/jiaa229
Lou, B. et al. Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset. Eur. Respir. J. 2020. https://doi.org/10.1183/13993003.00763-2020 .
Özçürümez, M. K. et al. SARS-CoV-2 antibody testing-questions to be asked. J. Allergy Clin. Immunol. 146, 35–43 (2020).
doi: 10.1016/j.jaci.2020.05.020
Petherick, A. Developing antibody tests for SARS-CoV-2. Lancet 395, 1101–1102 (2020).
doi: 10.1016/S0140-6736(20)30788-1
Casadevall, A. & Pirofski, L. The convalescent sera option for containing COVID-19. J. Clin. Investig. 130, 1545–1548 (2020).
doi: 10.1172/JCI138003
Tanne, J. H. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ 368, m1256 (2020).
doi: 10.1136/bmj.m1256
Wooding, D. J. & Bach, H. Treatment of COVID-19 with convalescent plasma: lessons from past coronavirus outbreaks. Clin. Microbiol. Infect. 26, 1436–1446 (2020).
doi: 10.1016/j.cmi.2020.08.005
Lassaunière, R. et al. Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv 2020; https://www.medrxiv.org/content/10.1101/2020.04.09.20056325v1 .
Alshukairi, A. N. et al. Antibody response and disease severity in healthcare worker MERS survivors. Emerg. Infect. Dis. 22, 1113–1115 (2016).
doi: 10.3201/eid2206.160010
Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264–7268 (2011).
doi: 10.4049/jimmunol.0903490
Liu, W. et al. Two‐year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193, 792–795 (2006).
doi: 10.1086/500469
Wu, L. P. et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg. Infect. Dis. 13, 1562–1564 (2007).
doi: 10.3201/eid1310.070576
Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).
doi: 10.1038/s41587-020-0631-z
Brinkmann, C. et al. The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells. PLoS One 12, e0189073 (2017).
doi: 10.1371/journal.pone.0189073
Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784.e5 (2020).
doi: 10.1016/j.molcel.2020.04.022
Berger Rentsch, M. & Zimmer, G. A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon. PLoS One 6, e25858 (2011).
doi: 10.1371/journal.pone.0025858
Hanika, A. et al. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J. Gen. Virol. 86, 1455–1465 (2005).
doi: 10.1099/vir.0.80788-0
Procko, E. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2. bioRxiv Prepr. Serv. Biol. 2, 21–24 (2020).
Yi, C. et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell. Mol. Immunol. 17, 621–630 (2020).
doi: 10.1038/s41423-020-0458-z
Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437–442 (2020).
doi: 10.1038/s41586-020-2456-9
Long, Q.-X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204 (2020).
doi: 10.1038/s41591-020-0965-6
Jiang, S., Hillyer, C. & Du, L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 41, 355–359 (2020).
doi: 10.1016/j.it.2020.03.007
Bloch, E. M. et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Investig. 130, 2757–2765 (2020).
doi: 10.1172/JCI138745
Premkumar, L. et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 5, eabc8413 (2020).
doi: 10.1126/sciimmunol.abc8413
Wu, F. et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. SSRN Electron. J. 2020. https://doi.org/10.2139/ssrn.3566211 .
Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 1–6 (2020).